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EXECUTIVE SUMMARY 

Current free and subscription-based trip planners have heavily focused on providing available 

transit options to improve the first- and last-mile connectivity associated with a destination. 

However, those trip planners may not truly be multimodal to vulnerable road users (VRUs) 

since the selected sidewalk routes may not be accessible or feasible for people with certain 

disabilities. Depending on the level of availability of digital twin of travelers’ behaviors and 

sidewalk inventory, providing a personalized suggestion about the sidewalk with route features 

coupled with transit service reliability could be useful and happier transit riders may boost 

public transit demand/funding and reduce rush hour congestion. This research focuses on 

improving the transit service of vulnerable road users while addressing recent trends in 

Medicaid transformation. One of the most notorious issues is the difficulty of knowing how 

much added time cushion should be considered for picking-up each user and transit time. This 

temporal time uncertainty will be uniquely formulated by taking advantage of the data 

collected before and after the Medicaid transformation, which will make this research a pioneer 

in demand response transportation systems. From a user perspective, an adaptive trip planner 

considers the real-time impact of environment changes on pedestrian route choice preferences 

and tolerance level in response to transit service uncertainty. Sidewalk inventory is integrated 

in directed hypergraph on the General Transit Feed Specification to specify traveler utilities as 

weights on the hyperedge. A realistic assessment of the effect of the user-defined preferences 

on a traveler's path choice is presented for a section of the Boston transit network, with 

schedule data from the Massachusetts Bay Transportation Authority. Different maximum 

utility values are presented as a function of varying travelers’ risk-tolerance levels. In response 

to unprecedented climate change, poverty, and inflation, this new trip planner can be adopted 

by state agencies to boost their existing public transit demand without extra efforts. 
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1. INTRODUCTION  

Eighty-nine percent of the U.S. population is projected to live in urban areas by 2050 and more 

than 300 urban areas having populations above 100,000 spark greater demand for multimodal 

transit. Recent widespread food insecurity and housing instability have magnified the already 

extreme income inequities and accessibilities. Vulnerable road users (VRUs) walk and bike to 

reach transit, food, jobs, and medical services while temperatures dive from record highs to 

freezing. While one in five North Carolinians will be at least 65 years old needing other 

accessible alternatives to driving, current free and subscription solutions, such as Google Maps 

and GoTriangle, fail to incorporate detailed access information for people with personal 

preference and mobility limitations. In response to unprecedented climate change, poverty, and 

inflation, we need a multimodal trip planner more than ever. Happy transit riders play an 

important role in boosting public transit demand/funding and reducing rush hour congestion. 

North Carolina’s GoTriangle planner provides travel options to commuters by 

referencing Google Transit routes. However, GoTriangle does not provide integrated mobility 

and accessibility options for NC travelers. The trip planner does not connect transit options to 

other modal options (e.g., bikes, e-scooter, etc.). Each trip option only provides estimated 

walking time to/from transit stops without considering the accessibility. The Massachusetts 

Bay Trip planner is the only successful tool to integrate mobility information about sidewalk 

slope, surface, width, and shade. It takes great effort and time to develop a trip planner tool 

that reflects local community needs and deliver multimodal transportation safely and equitably. 

In this project, unlike other trip planners, Multi-Modal Optimal Dynamic pErsonalized 

(M2ODE) trip planner recommends the transit options including accessible and feasible 

sidewalk routes for travelers in the pedestrian modes. This project investigates both the system 

and user side of the trip planner that have different goals and objectives; therefore, although 

this project’s main focus is on VRUs, Sections 2 and 3 of this report addresses two different 

problems.  
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2. TRIP PLANNER MODE (MULTIMODAL OPTIMAL DYNAMIC 

PERSONALIZED) 

Recent work done by authors of this study developed VRU Personalized Optimized Dynamic 

(VRUPOD) [1] trip planner to provide personalized sidewalk route guidance for users who save 

personal information relevant to transportation needs (e.g., stamina and ability to traverse 

uneven terrain) and publicly available information about route nodes, elevation changes, 

weather, and traffic etc. This project integrates utilities of transit route choices with sidewalk 

route choices associated with individual needs and capabilities (Figure 1). 

 

 
Fig. 1: M2ODE trip planning with best path recommendation: To go from origin O to 

destination D, the traveler’s multimodal options, including sidewalk (e.g., walk, bike) or 

transit (e.g., bus), depends on availability and anticipated conditions on these modes. 

 

This project addresses the limitations of existing linear shortest cost algorithms in 

multimodal trip planning due to dynamic interactions between environmental parameters and 

user preferences. It introduces an adaptable model that considers various modes of 
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transportation, changing environmental conditions, and user preferences over time. By 

incorporating travel time uncertainties and travelers’ tolerance levels, the proposed multimodal 

trip planner provides personalized path recommendations. The model combines pedestrian and 

transit mode decisions using a heuristic approach and utility maximization. The paper utilizes 

the hypergraph framework [2], [3], [4], [6] to model the transit schedule network and presents 

a numerical example to estimate anticipated travel time variability and offers a novel approach 

for personalized path accessibility considering multimodal transportation and traveler 

preferences. 

 

2.1. LITERATURE REVIEW 

While there is a rich history of trip planners for the transit mode, the pedestrian mode with 

preferences has received less attention, thus there is an absence of full integration of both 

pedestrian and transit modes. This is critical since individuals with mobility issues, such as 

elderly persons or wheelchair users, are more sensitive to uncertainties in services. 

2.1.1 TRIP PLANNER FOR PEDESTRIAN MODE 

Undoubtedly, navigation systems that integrate user preferences find routes that are more 

suitable for VRUs than the shortest routes [5], [8], [9]. VRUs encounter a range of obstacles 

impeding easy navigation in the sidewalk network [10]. Existing designs of public 

transportation systems do not entirely fulfill the needs of people with disabilities in terms of 

mobility and accessibility though they are user centered [7], [9], [11]. Though existing design 

may offer personalized routing, it lacks in multimodality [12]. Identifying and avoiding 

inaccessible places in the current pavement network as a short-term solution instead of 

redesigning urban transportation and sidewalk networks as a long-term solution can accelerate 

helping VRUs [13]. Applications such as the OpenRouteService provides a single American 

Disability Association (ADA)-compliant path for a baseline level of accessibility. Such ”one-

size-fits-all” approaches to different pedestrian mobility need only ensure that pedestrians 

fitting a particular description (e.g., wheelchair user) can use the path specified. However, the 
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path for many mobility-impaired people requires consideration of their specific needs and 

capabilities. 

This project develops the pedestrian model with the following contributions. First, the 

pedestrian model accommodates the various sidewalk factors: width, slope, surface type, and 

length, identified to influence users’ path choice significantly [8], [14], [15], to improve the 

safety and mobility for people with mobility impairments who walk and use transit in urban 

and suburban environments. Second, the pedestrian model accommodates changing 

preferences and the interaction effect between sidewalk variables and weather conditions 

contributing to a path choice. 

 

2.1.2 TRIP PLANNER FOR TRANSIT MODE 

The majority of studies on transit accessibility and route choice decisions for flexible/fixed 

transit have focused on travel time as the only measure for planning route choice, though some 

have accounted for attributes such as monetary fare [16], [17]. Consequently, minimizing the 

expected travel time has been widely developed for evaluating transit route choice [18]. For transit 

trip planning purposes, the most common method of estimating the expected travel time is to use 

the schedule-based data in a standard format known as the General Transit Feed Specification 

(GTFS) [19]. OpenTripPlanner utilizes GTFS data and pedestrian networks (e.g., OpenStreetMap) 

for route planning. However, relying solely on schedules has limitations, such as 

under/overestimating travel time and disregarding congestion and variability. Traditional route 

choices prioritize minimizing schedule travel time, neglecting real-time delays and urban peak-hour 

variations. 

The availability of automatic vehicle location (AVL) data allows transit system managers 

to measure day-to-day travel time variability on transit links. This data can be used to improve 

traveler’s accessibility and route choice decisions by considering anticipated variability. Previous 

studies have shown the impact of travel time variability on transit route choices [20], [21], but 

integrating traveler’s perception of this variability is lacking. This research contributes to 
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personalized path accessibility models by incorporating traveler’s perception of variability, even if 

it does not result in the lowest expected schedule travel time. 

The widespread collection and availability of AVL data can support characterizing the 

reliability of transit networks. AVL data can estimate the anticipated travel time variability on transit 

links for a given period and day before making route choice decisions. Anticipating and integrating 

the travel time variability as a measure of reliability for planning route choice can provide more 

rational routes according to the traveler’s perception of the anticipated variability, even if such route 

is not one with the minimum schedule travel time. Even for driving, the inclusion of reliability in 

route choice and accessibility modeling is still at an exploratory stage [22]. 

 

2.1.3 INTEGRATED MULTIMODAL NETWORKS 

Studies on integrating first/last mile connections with flexible/fixed transit in multimodal 

networks are popular in literature [23]. The emphasis has been on integrating modes such as 

electric scooters, bike-sharing, and car-sharing with fixed transit in a decentralized problem 

with less attention on pedestrian modes (e.g., sidewalk) [24], [25], [26], [27]. Still, those 

considering pedestrian modes are limited to recommending the shortest sidewalk path to users 

in getting to/from transit stops and other destinations in the pedestrian network. In addition, 

the existing framework for integrating pedestrian connections is based on each mode’s local 

routing [24], [25]. However, there are several concerns on the benefit of the current multimodal 

framework. First, rather than the shortest path, considering the accessibility of VRUs in the 

path model will improve the mobility of VRUs. Second, building pedestrian connections to 

fixed transit in multimodal networks needs to guarantee a smooth transfer between the modes. 

Our approach calculates the most accessible sidewalk path for pedestrians based on an 

ADA [28] standard measure. We narrow down the sidewalk network to a spatial region 

centered around the traveler’s location, using the shortest distance between relevant points. 

This reduces the search space and avoids impractical solutions. The personalized path 

recommendation considers schedule travel time, anticipated travel time variability, and 

pedestrian accessibility in a utility maximization model. We also account for the inconvenience 
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that travelers may tolerate due to variability in transit travel times and waiting times. This is 

done by incorporating risk-tolerance to anticipated variability. Our model: 

• Incorporates the travelers' personalized preference to sidewalk accessibility to/from 

transit stops and to other destinations 

• Accommodates the interaction between sidewalk factors and weather conditions for each 

sidewalk segment contributing to a path choice. 

In addition to expected schedule travel time, the travelers' perception of reliability of the 

schedule is incorporated as the risk-tolerance on the anticipated travel time variability, 

modeled as a function of the mean and variance of link/route travel time [29]. 

 

2.2. METHODOLOGY 

The travelers' preferences for the transit and pedestrian mode decisions are evaluated and 

combined in a heuristic for the personalized path search. We describe the transit network 

through nodes representing the origin stop, destination stop, and transit stops along a route, 

and edges representing the travel time conditions of the road between the nodes (Figure 2) run 

r is aggregated over several observation periods or days N and used to estimate link and route 

level travel time variability. Different times of the day are associated with different degrees of 

variability in link travel time. 

 

Fig. 2: A transit route with multiple stops showing how the experienced travel time for vehicle  

 

 



 

 Vulnerable Road User Transit Optimization with Healthcare Privatization (VRUTOP) 8 

 

 

2.1.4 TRANSIT NETWORK DESCRIPTION 

This study characterizes the anticipated day-to-day travel time variability for a vehicle run on 

each link/route in the transit network using historical time at each location from archived AVL 

data, also known as retrospective GTFS data. Vehicle run refers to the daily assignments for 

an individual bus. 𝑖𝑖 ∈ 𝐼𝐼 is the set of transit stops along the route and the set of vehicle runs 𝑟𝑟 ∈

𝑅𝑅 allocated to the route. 𝐴𝐴𝐴𝐴𝑇𝑇𝑖𝑖𝑟𝑟 is the actual arrival time of vehicle run 𝑟𝑟 ∈ 𝑅𝑅 at stop 𝑖𝑖 ∈ 𝐼𝐼. The 

invehicle travel time (IVTT) and the number of days/periods 𝑁𝑁 is given by: 

𝐼𝐼𝐼𝐼𝑇𝑇𝑇𝑇𝑖𝑖,𝑖𝑖+1𝑟𝑟 = 𝐴𝐴𝐴𝐴𝑇𝑇𝑖𝑖+1𝑟𝑟 − 𝐴𝐴𝐴𝐴𝑇𝑇𝑖𝑖𝑟𝑟 . 

The anticipated mean (𝜇𝜇) and variance (𝜎𝜎2) for 𝐼𝐼𝐼𝐼𝑇𝑇𝑇𝑇 is estimated as: 

𝜇𝜇(𝑖𝑖,𝑖𝑖+1)
(𝑟𝑟) =

∑  𝑁𝑁
𝑛𝑛=1  𝐼𝐼𝐼𝐼𝑇𝑇𝑇𝑇(𝑖𝑖,𝑖𝑖+1),𝑛𝑛

𝑟𝑟

𝑁𝑁
 

For cases of a normally distributed IVTT for link 𝑙𝑙, 𝑣𝑣(𝜇𝜇𝑙𝑙 ,𝜎𝜎𝑙𝑙2), this study assumes link travel 

time variability can be treated as normally distributed random variables. Therefore, the total 

anticipated 𝐼𝐼𝐼𝐼𝑇𝑇𝑇𝑇 of path 𝒫𝒫 is defined as the sum of each links anticipated mean and 

variances of travel time as 𝜇𝜇𝒫𝒫=∑𝒫𝒫𝜇𝜇 and 𝜎𝜎𝒫𝒫=∑𝒫𝒫𝒫𝒫. In selecting a transit route, our goal is to 

evaluate and incorporate the anticipated mean and variance of travel time for feasible 

alternative routes that satisfy a traveler's PAT at the destination. 

1) Transit schedule network: A route service graph for the transit network is expanded to a 

node-based time graph to capture the temporal information provided through the schedule 

data (Figure 3). The links connect these nodes to indicate the vehicle run trajectory between 

consecutive stops. In-vehicle travel time and walking time links are used to indicate 

movement from one node/stop to another node/stop. The anticipated in-vehicle travel time 

variability for each link/route is represented through the mean and variance of travel time 

for the link/route. Given the traveler's origin-destination pair (𝑂𝑂 − 𝐷𝐷), a PAT, the first of 

our twophase solution search procedure, utilizes the node-based time expanded graph in 

the personalized path accessibility framework. 
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2) Weighting functions on hyperedge: The directed hypergraph on the transit schedule 

network associates each hyperedge 𝜔𝜔 with a real weight vector 𝐰𝐰(𝜔𝜔). Without loss of 

generality, the component of the weight vector is expected schedule travel time (including 

walking and waiting time) on the hyperedge. For each feasible path Π that satisfies the 

travelers PAT at the destination, the weighting function defines a node function 𝐖𝐖Π which 

assigns weights to all its nodes (time expanded stops) depending on the weights of its 

hyperedges. Given the destination 𝐷𝐷,𝐖𝐖Π(𝐷𝐷) is the weight of the path Π under the chosen 

weighting function. In this study, we define an additive weight function on each time 

expanded stop 𝑆𝑆𝑛𝑛 as a function of both the weights of the hyperedges entering into 𝑆𝑆𝑛𝑛 and 

that of the nodes in their tail (for simplicity, let 𝑦𝑦 = 𝑆𝑆𝑛𝑛 ): 

𝐖𝐖Π(𝑦𝑦) = min{𝐰𝐰(𝜔𝜔) + FΠ(T(𝜔𝜔)):𝜔𝜔 ∈ EΠ ∩ BS(y)},
𝑦𝑦 ∈ 𝐼𝐼Π ∖ {𝑠𝑠},  

where FΠ(T(𝜔𝜔)) is a function of the weights of the nodes in T(𝜔𝜔), and BS(y) = {𝜔𝜔 ∈

E: y ∈ H(𝜔𝜔)} is the backward star of node 𝑦𝑦 representing the incoming edge at node 𝑦𝑦. F is 

a nondecreasing function of 𝐖𝐖Π(𝑥𝑥) for each 𝑥𝑥 ∈ 𝑇𝑇(𝜔𝜔) 

FΠ(T(𝜔𝜔)) = F({WΠ(x): x ∈ T(y)}),𝜔𝜔 ∈ EΠ. 

3) Cost of anticipated travel time variability: We integrate the travelers' risk-tolerance level 

concerning the anticipated variability for the best route recommendation, even if such a 

route is not with the lowest expected schedule travel time. We propose the exponential 

utility function 𝑢𝑢(Π) = −(sgn (𝜆𝜆))𝑒𝑒−𝜆𝜆Π, to characterize the traveler's preference to the 

anticipated travel time variability for transit links on feasible path Π. The local measure of 

risk-tolerance, known as the Arrow-pratt measure of absolute risk-aversion at Π, is 
−𝑢𝑢′′(Π)
𝑢𝑢′(Π)

= 𝜆𝜆. The representations 𝑢𝑢′(Π) and 𝑢𝑢′′(Π) are the first and second derivative of 

𝑢𝑢(Π). The values of 𝜆𝜆 ≠ 0 represents the risk-tolerance coefficient with the sign of 𝜆𝜆 (sgn). 

The mean-variance approximation is the sum of the anticipated mean travel time (𝜇𝜇) and 

the risk �𝒫𝒫
2

2
� multiplied by the risk-tolerance coefficient (𝜆𝜆), representing 𝑀𝑀Π = 𝜇𝜇Π + 𝜆𝜆𝒫𝒫Π

2

2
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as the balance between mean and variance of IVTT on feasible path Π. The generalized 

cost function in the transit route choice is defined to find the strategy that minimizes the 

sum of traveler's cost on (1) expected schedule travel time and (2) the anticipated travel 

time variability adjusted for the traveler's risk tolerance. 

 

Fig. 3: A Node-based representation of a transit network showing the time expanded transit 

stops. The nodes have space-time coordinates representing the different times of transit 

vehicle availability according to the schedule. Specifically, every stop is (a) expanded based 

on points in time when a vehicle from a route will visit, and (b) the time points are connected 

and expanded spatially by each vehicle run (or route). 
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2.1.5 SIDEWALK ACCESSIBILITY MEASURE 

Relating to previously established research [30], [31], we develop five parameters: width, 

length, slope, sidewalk surface type, and weather condition to characterize the accessibility of 

each sidewalk segment. The sidewalk network is represented as a graph 𝒢𝒢 = (𝒩𝒩,ℰ), where 

𝑛𝑛 ∈ 𝒩𝒩 is the set of nodes and 𝑒𝑒 ∈ ℰ is the set of edges. By assuming a spatial region (Radius 

(ℛ) equal to the shortest distance between two locations) we reduce the search space and also 

prevent finding infeasible solutions due to long distances. A traveler can move from node 𝑛𝑛 to 

node 𝑛𝑛′ if an edge connects the two nodes. The cost of each edge is based on parameters that 

define sidewalk accessibility for that edge for the traveler [1]. The interaction effect between 

sidewalk variables can limit the accessibility of sidewalk segments. 

This project considers five surface types based on field survey: concrete (best), asphalt, brick, 

cobblestone, and gravel (worst). Three levels of weather conditions are considered:sunny 

(best), rainy, snowy (worst)[1]. With appropriate adjustments to Eq. (4), the sidewalk path 

considering the travelers sidewalk accessibility preferences is found. Specifically, if we 

consider the arrival time at a destination 𝑛𝑛𝑑𝑑 (e.g., final destination D satisfying the PAT), the 

optimal sidewalk path minimizes the total cost for a given origin-destination pair (𝑛𝑛𝑜𝑜,𝑛𝑛𝑑𝑑) : 

𝐒𝐒Π(𝑛𝑛) = min{𝐬𝐬(𝑒𝑒) + SΠ(T(e)): e ∈ ℰ ∩ BS(n)},
𝑛𝑛 ∈ 𝒩𝒩{}.  
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2.3. EVALUATION 

2.3.1. ESTIMATION OF IN-VEHICLE TRAVEL TIME VARIABILITY 

Using retrospective GTFS data, a temporal aggregation of link-level travel time is used to 

estimate the anticipated IVTT variability. Retrospective GTFS data capture significant travel 

time variations for each vehicle run, providing a more realistic representation of the 

anticipated travel time variability. A statistical measure of each link-level variability defined 

by the mean and standard deviation of travel time is constructed for each day in the weekday 

as shown in Figure 4. 

 

Fig. 4: Estimated day-to-day IVTT variability for routes 43, 55, and 10 for the period 

between 5:00 and 8:00 am from historical AVL data. The estimates show significant travel 

time variability for most links. Specifically, we see that several links on routes 43, 55, and 10 

have high values of anticipated standard deviations for the period between 5:00 and 8:00 a.m. 

For example, looking at the link (1,2) on route 43 (Figure 4a and Figure 4d), the variability 

profile shows a significantly high standard deviation (≈ 220 s) compared to the mean travel 



 

 Vulnerable Road User Transit Optimization with Healthcare Privatization (VRUTOP) 13 

 

 

time (≈ 170 s) for Friday. This implies high volatility concerning the anticipated travel time 

on the link. The link-level travel time variability is easily extended to multiple consecutive 

links/routes as described in Section III-A. 

2.3.2. IMPACT OF RISK-TOLERANCE ON TRAVELERS ROUTE SELECTION 

Considering the anticipated travel time variability for the links/routes, the mean-variance 

approximation with travelers' risk-tolerance evaluates the inconvenience travelers are willing 

to experience due to these variability. Figure 5 shows the impact of the anticipated travel 

time variability on the route choice given the traveler's risk-tolerance coefficient. 

 

Fig. 5: Variation of travelers' cost for different risk-tolerance. The traveler's cost decreases 

with decreasing uncertainty (i.e., standard deviation) in travel time, indicating that the 

traveler will prefer a route with less volatility. We also see that the higher the risk-tolerance 

coefficient, the higher the traveler's sensitivity to anticipated travel time variability. 

Therefore, travelers with high risk-tolerance coefficient are less likely to select options with 

high standard deviations. For example, for the same variability profile (e.g., 𝜇𝜇 = 2, 𝜎𝜎 = 50), 

the traveler with a risk-tolerance coefficient of 0.2 has a lower travel cost (≈ 250) than the 
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traveler with a risktolerance coefficient of 0.4 (cost ≈ 500). This implies that the traveler 

(𝜆𝜆 = 0.4) perceives this route option as too costly compared to the other traveler (𝜆𝜆 = 0.2) 

 

The indifference curves shown in Figure 6 provide a 2-D contour representation of the 

travelers' perceived cost to the anticipated travel time variability. 

 

Fig. 6: Indifference curves considering risk-tolerance coefficient (𝜆𝜆 = 0.6). Points on the 

curves represent different mean and standard deviation combinations of travel time. For 

routes whose variability profiles result in the same cost, the traveler is indifferent to choosing 

among the routes. Such alternatives present the same level of inconvenience willing to be 

experienced by the traveler. For example, looking at the points (representing link/route 

options) with variability profiles 𝜇𝜇 = 25,𝜎𝜎 = 4 and 𝜇𝜇 = 19,𝜎𝜎 = 6, the traveler will be 

indifferent to selecting among these options since both result in the same cost. 
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2.3.3. ACCESSIBLE SIDEWALK PATH COMPARED TO SHORTEST PATH 

To evaluate the proposed pedestrian accessibility model independently, we conduct two 

experiments for different origin destination pairs in an 8 × 8 sidewalk grid network (data 

from Boston sidewalk inventory) and then compute the total score for sidewalk surface type 

and slope. 

The preferences of two users utilized in the experiment is summarized as: User1: 

High rating for surface type compared to slope, width, and distance (the lower the sidewalk 

surface type score, the better the sidewalk path), and User2: High rating for slope compared 

to width, surface type, and distance (the lower the sidewalk slope score, the better the 

sidewalk path). 

Figure 7 shows the comparison bar graphs for surface type and slope scenarios. While 

we have presented an elementary evaluation, the pedestrian accessibility model is adaptable 

to a wide range of sidewalk and weather conditions [1]. 

2.3.4. RESULTS OF PATH RECOMMENDATIONS CONSIDERING DEGREE OF 

RISK-TOLERANCE 

The simulation-based evaluation for a typical day of the week (i.e., Tuesday) shows the best 

path recommendation with the normalized cost of each feasible path alternative, and the 

weights 𝛽𝛽 on the cost (𝛽𝛽1 = −2,𝛽𝛽2 = −1,𝛽𝛽3 = −2). In effect, our simulation assumes the 

expected schedule travel time and the cost of the pedestrian accessibility model are twice as 

important as the cost of anticipated travel time variability. As described above, the following 

components are considered for each feasible path; (1) sidewalk cost estimated from the 

pedestrian accessibility model, (2) transit cost estimated from the mean-variance function due 

to anticipated traveltime variability, and (3) total expected schedule travel time (including 

waiting and walking time). The users preference concerning the sidewalk factors is set as: 

High rating for slope compared to width, length, and surface type. 
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Figure 8 shows the results for trips from all stops (origins) to one designated 

destination (All-to-one). We assume a destination stop 10, PAT = 6: 30a ⋅ m, and PAT time 

window 𝑑𝑑𝑑𝑑 = 15 min. Each route has a total of 4 trips that contribute to sub-paths satisfying 

the PAT with two transfer points (4 and 6). Walking from locations 7 to 6 is based on the 

optimal sidewalk path. The waiting time at a stop in each feasible path is calculated as the 

difference between schedule departure time and the expected arrival time. 

 

Fig. 7: Surface type and slope score comparison between VRUPOD and Shortest Path (SP). 

85.71 percent of sidewalk paths recommended by the VRUPOD method have the lowest 

average sidewalk surface type score. In the second test, as shown in Figure 7, 71.42 percent 

of sidewalk paths recommended by VRUPOD have the lowest average sidewalk slope score. 

This implies that VRUPOD path suggestions are affected by the users' preferences. This 
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interaction effect allows VRUPOD to select the appropriate sidewalk segments for the 

optimal path. 

In special cases, the static waiting time estimation can be extended to a more 

generalized waiting time as a function of bus punctuality. For example, when vehicles are 

instructed to wait at stops when vehicle arrival time is less than scheduled departure time, we 

can assume that the normal distributed IVTT between two consecutive stops will mostly lead 

to a log-normal distributed waiting time at the successive stops. In other words, the 

distribution for departure time delay for the vehicle runs at the stops is potentially right-

skewed. The anticipated travel time variability defined by the mean and variance for 𝐼𝐼𝐼𝐼𝑇𝑇𝑇𝑇 

for each physical path in a feasible path are computed from the results of the retrospective 

GTFS data, equal to the sum of mean and variances of travel time of links forming the path.  

As seen in Figure 8, the best path (vehicle run) at each stop considering the traveler's 

risktolerance coefficient of 0.2 is the path with the maximum utility. For example, traveling 

from origin location one to destination ten has a recommended departure time of 6: 12 a.m 

using vehicle run 5502, same as location five to ten. However, due to the optimal sidewalk 

path required to get to stop four to board bus 5502, the recommended departure time is 6:07 

a.m. 
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Fig. 8: Modified physical representation of route 10, 43 and 55 from MBTA showing 

common points. The results of path with utility 𝑈𝑈𝜆𝜆 for selecting minimum risk path based on 

the traveler's risk-tolerance at any given stop. SID: Stop ID, SS: Successor Stop, AR: 

Attractive Run, DT: Departure Time, LDT: Latest Departure Time to ensure arrival within 

PAT, 𝑑𝑑𝑡𝑡 :Transfer. Blue text in the figure shows run (strategy) that will be recommended for 

a traveler with risk-tolerance coefficient 𝜆𝜆 = 0.2. 

 

For example, looking at the path option from location eight to ten and risk-tolerance 

coefficients 0.2 and 0.4 , we see that the estimated utility for the two path options are simply 

scaled and so the path recommendation remain the same. 

Finally, we compare the path suggestions using the proposed utility function and the trip 

planner from MBTA for a typical Tuesday (Figure 9). 
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Fig. 9: Paths are evaluated for risk-tolerance coefficients 𝜆𝜆 = 0.2 and 1.0 , with pedestrian 

mode preferences favoring slope and surface type. Using the MBTA trip planner (PAT: 6:30 

a.m), suggested departure time is 6:08 a.m. Optimal path includes a 0.3mi sidewalk route to 

stop 6 , boarding route 43 outbound to final stop ten. Estimated utilities: 𝜆𝜆 = 0.2 (−3.010) 

and 1.0(−3.033). 

No definite conclusion can be made about the benefits of using our developed framework 

over the existing trip planners (e.g., MBTA), mainly because the MBTA trip planner option 

had a lower estimated schedule travel time of 14 min compared to our models' estimated 

schedule travel time of 20 min. However, we acknowledge that integrating the personalized 

sidewalk path option that considers the travelers' PAT at the final destination will serve 

vulnerable road users who are mostly limited in their social activities due to mobility 
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concerns. In addition, integrating the inconvenience, the travelers are willing to experience 

will provide a more rational route/path to a traveler's tolerance to ontransit variability. 

2.4. CONCLUSIONS 

This study develops a multimodal trip planner for VRUs on the pedestrian mode and on-

transit travel time, which has been neglected in commercial trip planners. The anticipated 

variability profile of the links and routes is computed from retrospective GTFS data. The 

exponential utility approximated by a function of mean-variance of travel time is used to 

evaluate travelers' risk-tolerance choice to the anticipated in-vehicle travel time variability. A 

case study is carried out on a simulated test network constructed on a section of the Boston 

transit network. Depending on the travelers' preferences, including their risk-tolerance to 

anticipated travel time variability, we find the best path recommendation through a utility 

maximization approach. 
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3. PROACTIVE PARATRANSIT ROUTING WITH DWELL TIME PREDICTION 

A slowly growing national trend on the transition of Medicaid healthcare delivery from 

predominantly fee-for-service to Managed Care Organization (MCOs) has been recently 

substantially in- creased. For example, Uber is already transporting passengers for medical 

appointments in the private sector through its platform, Uber Health. Although contracting 

with various types of MCOs is expected to reduce Medicaid program costs and better manage 

utilization of health services, we should also consider disadvantages to other non-Medicaid 

recipients particularly vulnerable to a decrease in access to other essential destinations. 

Analyzing the impact of the MCO model in a larger community, particularly on a trade-off 

between Medicaid recipients and non-recipients re- quires a significant data collection effort. 

Due to this limitation, existing transit service tools have had difficulties in capturing essential 

parameters in adjusting to the new environments. Without knowing what specific trends of 

privatizing Medicaid on where, when, how, have changed the patterns of users of the transit 

system, it’s difficult to improve the efficiency of the service. 

Fortunately, the recent remarkable transition toward broker-based privatization of 

Medi- caid funded service in North Carolina has produced an urgency to analyze the data. 

While State Agencies are focusing more on investigating system-level changes before and after 

the Medicaid Transformation, we need to know what specific local community attributes and 

how combined interaction impacts influence various performance measures of the transit 

system. 

Once a transit is assigned to a set of specific service requests in a sequence, a scheduling 

software requires to define the pick-up time for each user, which should neither be too long to 

harm the efficiency nor too short for the user to miss the transit. A wrong estimation of pick-

up dwell time could significantly disrupt the schedule due to the discrepancy with the actual 

schedule. One unit of delay for one user can result in cascading delays for other riders on that 

vehicles’ daily route. As some paratransit riders have serious illnesses, being late for a critical 

medical appointment can have life threatening implications. Transit systems need to find a 

way to balance customer ride time with total vehicle time-convenience and efficiency. 

Previous studies have addressed the transit scheduling and routing problem with 
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multiple solution techniques focusing on the online, dynamic, rolling horizon, and stochastic 

perspectives, while imposing maximum available constraints on the time windows. The study 

of formulating the temporal uncertainty of time windows into scheduling has been, however, 

less prevalent in the literature. This research seeks to fill this gap by studying time window 

uncertainty caused by Medicaid transformation across a collection of pickup and delivery 

problems with time windows. This research addresses small cities and rural areas (not limited) 

with little congestion but frequent difficulty in finding the exact pick-up location due to a lack 

of technology and country roads. Even though there are many urban traffic congestion oriented 

dynamic rerouting paratransit scheduling and routing algorithms previously developed, the 

research will be the first explicitly modeling the pick-up and transit time under the impact of 

Medicaid shifts and improving the efficiency of the transit service. 

New scheduling principles are developed to efficiently provide the service. Based on 

localized attributes, rather than a generalized for all service model, we can optimize the transit 

service while easily adjusting key parameters based on identified key contributing attributes. 

Medicaid transformation is a new trend that would change access to health care, which will put 

the proposed research to be at the frontiers of demand response transportation systems by 

capitalizing on the main source of unique patterns of Medicaid transformation influencing the 

service quality. 

 

3.1. LITERATURE REVIEW 

The Vehicle Routing Problem (VRP) has received considerable research interest since its 

intro- duction (1, 2). It involves the task of finding optimal routes for a fleet of vehicles to 

efficiently serve a set of customers or locations. Subsequently, numerous variations of the 

problem such as PDPTW have been investigated, and alternative solution methods have been 

suggested (3–6). For more comprehensive review, recent surveys of the VRP literature are 

available (7, 8). 

There are two operation schemes available: offline and online. In the offline setting, 

pas- sengers are required to reserve a ride in advance, allowing sufficient time for vehicle 

routes to be planned by matching requests. Information about daily operations is shared with 
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both passengers and drivers. On the other hand, the online setting enables real-time 

interaction among stakeholders. Passengers can request service whenever they need it, and 

operators can assign them to vehicles almost immediately. This makes the online setting 

more responsive to unexpected events such as last-minute cancellations or vehicle 

breakdowns.  

 In this study, we focus on the paratransit services and aim to enhance the models for 

dwell time (service time) at customer nodes. Dwell time has a significant impact on the on-

time per- formance of paratransit services and other transportation modes (9–12). Contrary to 

common perception, dwell time accounts for a substantial portion of overall trip time, 

ranging from 26% to 50% (13). However, accurately predicting dwell time remains a 

significant challenge due to several uncontrollable factors such as traveler behavior, mobility 

needs, among others. 

Certain recurrent disturbances can be relatively easier to predict. For instance, 

loading/ unloading delays can be anticipated if a rider arrives late at a meeting point or 

requires assistance devices like a wheelchair. Moreover, it is reasonable to suspect that a 

significant relationship exists between the spatiotemporal characteristics of a location and the 

potential delay it may cause. While traffic conditions can contribute to uncertainty, they can 

be mitigated by vehicle detours and avoiding congested areas. However, passengers cannot 

be left behind. Hence, this study suggests incorporating dwell time uncertainty into 

paratransit operation systems. 

Previous research has proposed various methods for estimating dwell time. Some 

studies have observed the actual dwell time and used statistical measures such as mean or 

distributions, while others have employed constant values for system-wide application (14, 

15). Majority of stud- ies have focused on applying different linear regression models (e.g., 

multiple, log-linear, quantile, etc.), considering attributes such as the type of vehicle used, 

and passenger characteristics (16–20). However, these models have been found to exhibit 

poor accuracy in estimating dwell time, often leading to significant underestimation or 

overestimation, due to their reliance on certain assump- tions. Specifically, linear regression 

models assume that the variance of the data remains constant across all values of the 
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dependent variable. This assumption are often not true for dwell time mod- els, as the 

variance of the data varies depending on the value of the dependent variable. Multiple linear 

regression have been proposed for analysis to adjust dwell time for paratransit services (21). 

This approach offers a comprehensive analysis of various independent variables. However, it 

over- looks potential interactions between variables and assumes linearity in the 

relationships. Similar studies have focused on incorporating variable or deterministic dwell 

time for scheduling transit system (22–24). However, these approaches have inherent 

limitations when it comes to accurately capturing the uncertainties of dwell time during the 

scheduling process.  

In order to enhance the efficiency and reliability of paratransit and bus transportation 

systems, it is essential to consider the implementation of a dynamic dwell time mechanism 

that can adapt in real-time as customer requests are fulfilled. Such a mechanism holds great 

potential for effectively addressing uncertainties inherent in operational conditions and 

significantly improving the accuracy of routing and scheduling decisions. By continuously 

updating dwell time estimates based on the progress of service delivery, transportation 

providers can optimize resource allocation and enhance the overall performance of their 

systems. This study introduces a novel methodology that incorporates dwell time uncertainty 

into paratransit operation systems, specifically focusing on sequentially updating the 

parameters of the dwell time prediction (DP) model after each request is fulfilled. 

This study focuses on the Pickup and Dropoff with Time Windows (PDPTW) 

problem for paratransit services, a variant of the Vehicle Routing Problem with Time 

Windows (VRPTW), aiming to identify efficient routes for a fleet of vehicles to serve 

customers while considering various constraints such as vehicle capacity, time windows, and 

distance limitations (25, 26). Our focus is primarily on the advanced request scenario, where 

the problem is defined prior to the need for a solution. In this scenario, customers are 

required to request services well in advance, allowing for efficient routing of paratransit 

vehicles before their departure from the depot. Once the vehicles have been dispatched, no 

additional requests for service can be accommodated. 

This study develops a novel approach that involves continuously updating the dwell 
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time model by sequentially adjusting its parameters. To achieve this, we employ a 

reinforcement learn- ing (RL) framework (27–30). By treating the problem as a sequential 

decision-making process, the RL framework allows us to learn and adapt the model based on 

the observed data and feed- back from the environment. This enables us to capture the 

complex dynamics and dependencies inherent in the PDPTW problem, leading to more 

accurate and effective predictions of dwell time. 

 

3.2. METHODOLOGY 

We now provide a detailed description of the PDPTW problem for paratransit 

services, present its mathematical formulation, and subsequently introduce the reinforcement 

learning (RL) framework developed to address this problem. 

 
3.2.1. PROBLEM DESCRIPTION 

Figure 1 illustrates the proposed paratransit routing problem, considering customer 

requests and a dwell time prediction (DP) model. The customer request comprises of pickup 

and drop-off lo- cations and is implemented as pairwise precedence constraints. These 

constraints play a crucial role in paratransit operations, ensuring the correct sequence of 

activities such as picking up customers before dropping them off at their destinations. By 

incorporating these constraints, valid route construction is simplified. 

Each request must be fulfilled within a specified time window and this window is 

established when a customer requests a pickup and drop-off within a specific time period. 

The time window specifies the earliest and latest times for service to begin and end. For 

instance, a para- transit vehicle may be required to pick up a customer from their residence 

between 8:00 AM and 8:30 AM and drop them off at their destination by 9:00 AM. Time 

window constraints can make finding feasible routes more challenging but are crucial for 

ensuring timely service for customers with disabilities or limited mobility. 

Each paratransit vehicle has a limited capacity (i.e., whether limited by the total 

weight of the passengers or the available space, or capacity, of the vehicle, or, in some 

applications, both weight and capacity limitations) are stationed at a depot and are available 

to serve the customers during the planning horizon. The planning horizon sets the time frame 
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within which vehicles must complete their routes, ensuring efficient operation and timely 

route completion. For example, for 2 a paratransit service that operates from 7:00 AM to 7:00 

PM each vehicle would be expected to 3 complete its route within that time frame. 

Paratransit vehicles are required to return to the depot 4 at the end of the planning horizon. 

The objective is to optimize the routes taken by the paratransit 5 vehicles to (1) minimize the 

total travel time of the fleet, (2) fulfill the customer requests on time. 

 

 

FIGURE 1: Paratransit route optimization to minimize travel time of fleet, fulfill the customer 

requests on time, and reduce the uncertainty associated with a dwell time prediction Model 

To incorporate and update the parameters of the Dwell Time Prediction (DP) model as customer 

requests are fulfilled, we begin by representing the model's parameters (weights) as a probability 

distribution with a prior. This prior is learned from historical paratransit service data and captures the 

initial uncertainty surrounding the parameters. The variance within the prior distribution reflects the 

level of uncertainty associated with the model. After each request is fulfilled, we use the observed 

data (actual dwell time) to update the DP model's parameters, resulting in a re-estimation of the 

probability distribution over the weights, which represents the posterior distribution. Our goal is to 

use the observed data to maximize the posterior distribution and reduce uncertainty in the model. The 
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updated posterior distribution provides more accurate knowledge about the model's parameters, 

allowing us to make more accurate predictions of dwell time and improve overall system 

performance. 

3.2.2. MATHEMATICAL REPRESENTATION 

Mathematically, we can express the described problem as follows: The paratransit routing problem is 

formulated on a graph consisting of three types of vertices: customer pickup vertices denoted as 𝐼𝐼p, 

customer drop-off vertices denoted as 𝐼𝐼d, and depot vertices denoted as 𝐼𝐼dep. Each vertex 𝑖𝑖 is 

associated with an array 𝑋𝑋𝑖𝑖𝑡𝑡 = �𝑥𝑥𝑖𝑖 , 𝑧𝑧𝑖𝑖 , 𝑙𝑙𝑖𝑖 ,𝑢𝑢𝑖𝑖 , dp𝑖𝑖𝑡𝑡 , 𝑟𝑟𝑖𝑖𝑡𝑡�, where 𝑥𝑥𝑖𝑖 and 𝑧𝑧𝑖𝑖 represents the geographical  

coordinate of vertex 𝑖𝑖, 𝑙𝑙𝑖𝑖 (lower bound), and 𝑢𝑢𝑖𝑖 (upper bound), represent the corresponding time 1 

window, dp𝑖𝑖𝑡𝑡, is the predicted dwell time (time it takes the bus to complete the request once the bus 

has arrived at the vertex), and 𝑟𝑟𝑖𝑖𝑡𝑡 is the remaining request at vertex 𝑖𝑖 at step 𝑑𝑑. The variables dp𝑖𝑖 , 𝑟𝑟𝑖𝑖, 

and 𝑋𝑋𝑖𝑖 are characterized by the step 𝑑𝑑 because we solve the problem in a sequential manner, and these 

three elements would change over time. All other elements in 𝑋𝑋𝑖𝑖𝑡𝑡 are static. The time window at the 

depot is defined as starting from 0 up to the end of the planning horizon denoted as T([0, T]). 

Additionally, the predicted dwell time and remaining request at this vertex are both set 7 to zero. At 

each step 𝑑𝑑, the set of vertex arrays 𝑋𝑋𝑡𝑡 describes the local information at the vertices. The graph is 

complete, and the weight of each edge (travel time) is the Euclidean distance between the connected 

vertices. The nodes in the graph have access to a common set of global variables denoted as 𝐺𝐺𝑡𝑡 =

{𝜏𝜏𝑡𝑡 ,𝜎𝜎2,𝑡𝑡 ,𝑝𝑝𝑡𝑡} where 𝜏𝜏𝑡𝑡 ,𝜎𝜎2,𝑡𝑡, and 𝑝𝑝𝑡𝑡 indicate the time, variance of the parameter distribution of the DP 

model, and the number of bus(s) available at the start of step 𝑑𝑑, respectively. The values of 𝜏𝜏𝑡𝑡 and 𝑝𝑝𝑡𝑡 

are initially set to 0 and the size of the fleet respectively. The initial value of 𝜎𝜎2,𝑡𝑡 is the prior variance 

of the distribution over the weights of the DP model. All the global variables could change over time. 

A solution to the paratransit routing problem is represented by a sequence of vertices in the graph, 

interpreted as the routes taken by buses. The routes for different buses are separated by the depot. For 

example, if vertex 0 represents the depot, a vertex sequence of {0,2,5,0,4,3,0} corresponds to two 

routes: one that travels along 0 → 2 → 5 → 0 and another that travels along 0 → 4 → 3 → 0. This 

implies that two buses were used to complete the solution. In order to satisfy the precedence 

constraint between pick-up and drop-off requests, vertices 2 and 4 are pickup requests, while vertices 

5 and 3 are drop-off requests. 
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3.2.3. REINFORCEMENT LEARNING REPRESENTATION 

Looking at the problem of PDPTW for paratransit services from a reinforcement learning perspective, 

we assume that an agent is responsible for generating a solution to the problem by taking a sequence 

of actions. At each step, the agent observes the current state of the system and makes an action based 

on the available information. This action then leads to a change in the system state, and the process 

repeats until a termination condition is met. To train the agent, we provide it with numerous PDPTW 

instances and use a reward function to evaluate the solutions it generates. The goal is to guide the 

agent to improve its performance over time. 

The state of the system in this context is described by the information contained in 𝑋𝑋𝑡𝑡  and 𝐺𝐺𝑡𝑡, which 

pertain to the graph. An action involves adding a vertex to the end of the current sequence, which is 

denoted by 𝑦𝑦𝑡𝑡. The vertex sequence formed up to step 𝑑𝑑 is denoted by 𝑌𝑌𝑡𝑡. The termination condition 

is that all customer requests are satisfied, which occurs at step 𝑑𝑑𝑚𝑚. At each step 𝑑𝑑, we estimate the 

probability of adding each vertex 𝑖𝑖 to the sequence, given 𝐺𝐺𝑡𝑡 ,𝑋𝑋𝑡𝑡, and travel history 𝑌𝑌𝑡𝑡, as 

Pr (𝑦𝑦𝑡𝑡+1 = 𝑖𝑖 ∣ 𝑋𝑋𝑡𝑡 ,𝐺𝐺𝑡𝑡 ,𝑌𝑌𝑡𝑡). We then find the next vertex to visit, 𝑦𝑦𝑡𝑡+1, based on this probability 

distribution. Finally, we update the system states using transition functions based on 𝑦𝑦𝑡𝑡+1 : 

𝜏𝜏𝑡𝑡+1 = �
𝜏𝜏𝑡𝑡 + DT𝑦𝑦𝑡𝑡 + 𝑤𝑤(𝑦𝑦𝑡𝑡 ,𝑦𝑦𝑡𝑡+1),  if 𝑦𝑦𝑡𝑡 ∈ 𝐼𝐼p,d

𝑤𝑤(𝑦𝑦𝑡𝑡 ,𝑦𝑦𝑡𝑡+1),  if 𝑦𝑦𝑡𝑡 ∈ 𝐼𝐼dep
 

where 𝑤𝑤(𝑦𝑦𝑡𝑡 ,𝑦𝑦𝑡𝑡+1) is the travel time from vertex 𝑦𝑦𝑡𝑡 to vertex 𝑦𝑦𝑡𝑡+1, DT𝑦𝑦𝑡𝑡  is the observed  (actual) 

dwell time to pick-up or drop-off customers at vertex 𝑦𝑦𝑡𝑡 (representing the service time at 1 the 

customer vertex). Next, the variance of the distribution over the weights of the DP model is updated 

as (31): 

𝜎𝜎2,𝑡𝑡+1 = �
𝜎𝜎2,𝑡𝑡𝜎𝜎2,𝑡𝑡

𝑛𝑛𝜎𝜎′2,𝑡𝑡 + 𝜎𝜎2,𝑡𝑡  if 𝑦𝑦𝑡𝑡 ∈ 𝐼𝐼p,d

𝛿𝛿′2,𝑡𝑡 ,  otherwise 
 

Where 𝜎𝜎2,𝑡𝑡 is the prior variance, 𝜎𝜎2,𝑡𝑡 is the new sample variance, and 𝜎𝜎2,𝑡𝑡+1 is the posterior variance 

of the distribution over the weights of the DP model and 𝑛𝑛 is the sample size (new information). 

Finally, the number of buses available 𝑝𝑝𝑡𝑡, and the remaining request 𝑟𝑟𝑖𝑖𝑡𝑡 at each vertex are updated as 

follows: 
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𝑝𝑝𝑡𝑡+1 = �
𝑝𝑝𝑡𝑡 − 1,  if 𝑦𝑦𝑡𝑡 ∈ 𝐼𝐼dep
𝑝𝑝𝑡𝑡 ,  otherwise 

 

𝑟𝑟𝑖𝑖𝑡𝑡+1 = �
0,  if 𝑦𝑦𝑡𝑡 = 𝑖𝑖
𝑟𝑟𝑖𝑖𝑡𝑡 ,  otherwise 

 

We define the reward function for a sequence of vertices, denoted by 

 𝑌𝑌𝑡𝑡𝑚𝑚 = {𝑦𝑦0,𝑦𝑦1, … ,𝑦𝑦𝑡𝑡𝑚𝑚}, 

such that a high reward value indicates a high-quality solution. In order to achieve the objective of the 

problem, which is to minimize the total travel time of the fleet, the variance of the distribution over 

the weights of the DP model, and the number of vehicles used, we set the first term of equation to be 

the negative total travel time of the fleet, which prioritizes lower travel time solutions. The second 

term accounts for the variance of the distribution over the weight of the DP model, making the agent 

select sequences that minimize the uncertainty of the DP model parameters. 

 𝑟𝑟(𝑌𝑌𝑡𝑡𝑚𝑚) = 𝛼𝛼1∑𝑡𝑡=1
𝑡𝑡𝑚𝑚  𝑤𝑤(𝑦𝑦𝑡𝑡−1,𝑦𝑦𝑡𝑡) + 𝛼𝛼2𝜎𝜎2,𝑡𝑡𝑚𝑚 

where 𝑤𝑤(𝑦𝑦𝑡𝑡−1,𝑦𝑦𝑡𝑡) is the travel time on edge (𝑦𝑦𝑡𝑡−1,𝑦𝑦𝑡𝑡) along trajectory 𝑌𝑌𝑡𝑡𝑚𝑚 ,𝛼𝛼1 and 𝛼𝛼2 are negative 

constants. 

All additional constraints of the problem, such as the pickup and drop-off precedence constraint, are 

defined as follows: If the paratransit vehicle is at vertex 𝑖𝑖 at step 𝑑𝑑 and there exists a vertex 𝑗𝑗 (where 𝑗𝑗 

is not equal to 𝑖𝑖 ) that satisfies any of the specified conditions, we set the transition probability 𝑝𝑝𝑖𝑖𝑡𝑡 to 

be 0 for moving to that particular vertex. 

• Vertex 𝑗𝑗 ∈ 𝐼𝐼𝑝𝑝 represents unsatisfied pick-up request and the remaining capacity of the bus is 

zero. 

• The earliest arrival time at vertex 𝑗𝑗 violates the time window constraint ( i.e., 𝜏𝜏𝑡𝑡 + 

𝑤𝑤(𝑦𝑦𝑡𝑡−1,𝑦𝑦𝑡𝑡) > 𝑢𝑢𝑗𝑗� 

• Let pre (𝑗𝑗) denote the set of nodes that must be visited before node 𝑗𝑗 and 𝑌𝑌𝑡𝑡𝑖𝑖 denote the set of 

nodes that have already been visited by the agent up to current node 𝑖𝑖. The node 𝑗𝑗 is 
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infeasible if pre (𝑗𝑗) ∉ 𝑌𝑌𝑡𝑡𝑖𝑖. This masking scheme enforces the pickup and drop-off precedence 

in the paratransit routing problem. Note that all pickup nodes �𝑖𝑖 ∉ 𝐼𝐼p� have no precedence 

nodes (empty set), and each drop-off node (𝑖𝑖 ∉ 𝐼𝐼d) has exactly one pickup node as 

precedence. 

• We mask all the vertices except the depot if the paratransit vehicle is currently at the depot 

and there are no remaining customer request vertices. 

3.3. NUMERICAL EXAMPLE 
In this section, we first provide an exploratory analysis of real-world dwell time distributions, 

followed by a numerical example using toy data to illustrate and discuss our developed sequential 

update of the dwell time model. Subsequently, we provide an example that discusses routing 

scenarios, incorporating relevant route considerations as described in the methodology. 

3.3.1. Exploratory analysis of dwell time distribution 

Firstly, we performed a cluster analysis on the pick-up longitude and latitude coordinates for 

sample data from Elizabeth City. Using K-means clustering, we identified eleven distinct 

clusters. The obtained results in Figure 2a showed a significant clustering performance with 

an F value of 164.5 and Pr (>F) < 2e-16, indicating statistical significance in the clustering 

outcome. For each cluster, we constructed its respective dwell time density function (Figure 

2b), which characterizes the distribution of dwell times within that specific group. 
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(a) Elizabeth City Scatter plot of pick-up coordinates clusters 

 

 
(a) Dwell time density function by cluster 

FIGURE 2: Cluster analysis of dwell time data 
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We observed notable variations in paratransit activity patterns across different geographical 

regions. Some clusters exhibited higher densities of short dwell times, suggesting efficient 

drop-off and pick-up processes, while others displayed more extended dwell times, 

potentially indicating specific locations with higher demand or operational complexities. 

Figure 3 shows how dwell time varies across different time periods and locations. Longer 

dwell times may indicate congested or busy stops, while shorter dwell times may reflect 

efficient boarding and alighting processes. Figure 3a focuses on locations with short dwell 

times, high- lighting areas where passengers tend to board and alight swiftly. Figure 3b 

shows medium dwell times, indicating locations where boarding and alighting processes 

require moderate time. Finally Figure 3c focuses on locations with long dwell times, 

identifying places or time periods that expe- rience delays during passenger movements. This 

exploratory analysis yields crucial insights into the dwell time distribution. By observing the 

spatiotemporal patterns, we can identify potential trends and correlations that can be 

leveraged in improving predictions of dwell time prediction for future request. 

 

3.3.2. DWELL TIME ESTIMATION MODEL 

In exploring the dwell time data, we conducted a logistic regression with a 70% training and 

30% testing split, achieving an 89.45% accuracy in distinguishing between the two classes. 

 

The receiver operating characteristic (ROC) curve depicted (Figure 4b) the model’s 

performance by varying the discrimination threshold. An AUC of 0.62 indicated moderate 

predictive power, correctly classifying 62% of cases, surpassing random guessing (50%), but 

with room for improvement. The ROC curve’s shape aided in selecting an optimal 

classification threshold.  
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(a) Spatiotemporal distribution of ‘short’ dwell time 

 
(b) Spatiotemporal distribution of ‘moderate’ dwell time 

 
(c) Spatiotemporal distribution of ‘long’ dwell time 
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FIGURE 3: Distribution of dwell time classified into three groups 

 
(a) Importance of each variable as a percentage 

 
FIGURE 4: Dwell time estimation model analysis 
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3.3.3. Sequential Updates for the Dwell Time Model 

We first illustrate the sequential update process for the dwell time model using Bayesian 

inference. Specifically, we consider a dwell time model with two weights: Weight 1 and 

Weight 2. The goal is to iteratively update the mean and variance of these weights based on 

observed dwell time as each request is served. To demonstrate the sequential update, we 

perform Bayesian inference for the mean and variance of the weights using the dwell time 

data in the given scenario. Assuming a normal distribution prior for the weights, we update 

them sequentially after processing each request. 

 

 
FIGURE 5: Stop sequence and requests 

 

TABLE 1: Assumed values for the computation of updated weights 
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We begin by serving Request 1 at Stop B. The observed dwell time for this request is 4 

minutes. We assume a prior distribution for the weights, with a mean (µ) of 3 and a variance 

(σ 2) of 1.5. Using the current mean and variance values, we compute the likelihood by 

evaluating the probability density function (PDF) of the normal distribution. In this case, the 

likelihood (L1) is calculated as 0.2. Next, we compute the posterior distribution by 

multiplying the prior distribution with the likelihood. This posterior distribution (P1) 

represents the updated belief about the weights given the observed dwell time. 

 

To update the mean and variance of each weight, we use the posterior distribution 𝑃𝑃1. The 9 

updated mean (𝜇𝜇′) and variance �𝜎𝜎2′� are computed using the formulas derived from 

Bayesian 10 inference. In this case, the updated mean is approximately 3.178 , and the 

updated variance is 11 approximately 0.171. 𝜇𝜇 = 1.5×4+3×0.2
1.5+0.2

≈ 3.178𝜎𝜎2 = 1
1
1.5+

1
0.2
≈ 0.171 

Moving on to Request 2 at Stop C, the observed dwell time for this request is 5 

minutes. We calculate the likelihood (L2), resulting in a value of 0.3. Using the updated mean 

(µ) and variance (σ 2) from the previous step as the prior distribution, we compute the 

posterior distribution for Request 2. This posterior distribution (P2) represents the refined 

belief about the weights after considering the new observation. Similarly, we update the 

mean and variance of each weight using the posterior distribution P2. These updated values 

represent the improved estimates of the weights after incorporating the observed dwell time 

for Request 2. The sequential update process continues for each subsequent request (Table 

2), allowing the dwell time model to adapt and refine its parameters based on the observed 

data. This iterative Bayesian model update ensures that the dwell time predictions become 

more accurate and reliable as more requests are served. 
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TABLE 2: Sequential update process for DT model as requests are served 

Request Stops Observ. DT 𝜇𝜇𝑤𝑤1 𝜎𝜎𝑤𝑤12  𝜇𝜇𝑤𝑤2 𝜎𝜎𝑤𝑤22  Pred. DT 

- A - 3 1.5 2 2 [5,6,7] 

1 B 4 3.178 0.171 2 2 [6.34,7.17] 

2 C 5 3.625 0.2813 2.5 1.5 [8.625] 

- D - 3.625 0.2813 2.5 1.5 [8.625] 

3 E 7 4.1563 0.2109 2.9688 1.1719 [] 

- A - 4.1563 0.2109 2.9688 1.1719 [] 

 

 

3.3.4. Optimal customer service sequence 

Figure 6 presents a simple numerical example for a typical paratransit service serving 

customers. The options are organized based on the assignment of customers to two available 

vehicles, referred to as Vehicle 1 and Vehicle 2. Each routing option is denoted by a distinct 

combination of customers served by the respective vehicles, and their corresponding total 

travel times are provided for evaluation. A critical aspect of this paratransit service lies in the 

constraint of feasible routing options, which is determined by the pickup and drop-off time 

windows. These time windows play an important role in ensuring that the service adheres 

strictly to predefined time constraints.  

 

Table 4 provides further details about the characteristics of each customer request. Each row 

represents a different customer, identified by their unique identifier (Customer a, b, c, d, and 

e). The table includes information about the pickup location, drop-off location, pickup time 

window, drop-off time window, mobility need, and time of day for each customer’s trip. 
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FIGURE 6: Simple numerical example for a typical paratransit service serving customers 

 

Looking at Figure 6, three main options satisfy the PU/DO constraints time window of the 

customers. In Table 4, we present the various routing options for serving customers in our 

paratransit service, along with their corresponding total travel times. In option 1, Vehicle 1 

serves customers a, b, and c, in that order with a total travel time of 40 minutes, while 

Vehicle 2 serves customers d and e, with a travel time of 30 minutes, leading to a combined 

total travel time of 70 minutes. Similarly, option 2 involves Vehicle 1 serving customers b, a, 

and c, resulting in a travel time of 47 minutes, and Vehicle 2 serving customers d and e, with 

a travel time of 30 minutes. This results in a combined total travel time of 77 minutes. The 

best routing option estimated as option. In this configuration, one vehicle serves all the 

customers efficiently in this order a, b, c, d, and e, leading to a total travel time of 65 

minutes. This arrangement achieves a notably reduced total travel time. Compared to the 

options 1 and 2, option 3 reduces travel time by 7.14% and 15.58% respectively. By 

choosing the most efficient routing, the service providers can ensure timely and satisfactory 

transportation for all customers while optimizing resource utilization. 
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TABLE 3: Customer Requests and Travel Times 

R PU Loc. DO Loc. PU TW DO TW Mobility Need Time of Day 

a 
A1 DA 8:00 AM 9:00 AM 2 (cane) 1 (afternoon) 

  −8: 30AM −9: 30 AM   

𝑏𝑏 
A2 DA 8: 15AM 9: 15 AM 1 (no support) 1 (afternoon) 

  −8: 45AM −9: 45 AM   

c 
A3 DA 8:30 AM 9: 30AM 3 (wheelchair) 1 (afternoon) 

  -9:00 AM −10: 00 AM  C2 + s2 

d 
B1 DB 8: 45 AM 9:45 AM 2 (cane) 2 (morning) 

  −9: 15 AM −10: 15 AM 𝑥𝑥2 + 2 + 3  

e 
B2 DB 9:00 AM 10:00 AM 3 (wheelchair) 2 (morning) 

  −9: 30AM −10: 30AM  -5 

 

TABLE 4: Routing Options and Total Travel Time 

Routing Option Vehicle 1 Customers Vehicle 2 Customers Total Travel Time (min) 

Option 1 a, b, c d, e 70 

Option 2 b, a, c d, e 77 

Option 3 a, b, c, d, e, - 65 
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3.4. CONCLUSION 

In this work, we presented a sequential update process for a dwell time model in the context 

of para- transit routing. The complexity of this problem is further compounded by the 

dynamic and uncertain nature of dwell time, necessitating the use of efficient and adaptive 

learning techniques to yield effective solutions for pick-up and delivery problem with 

uncertain time window. We develop a data-driven reinforcement learning to minimize total 

delays for a sequence of on-demand requests, while anticipating dwell times based on 

specific characteristics. By incorporating Bayesian inference, we demonstrated how to refine 

the model’s parameters after each served request, considering both the observed dwell time 

and the prior information. A novel paratransit routing proactively anticipates the dwell time 

considering the diverse context of requests in serving individuals with disabilities and the 

elderly. 

Through a numerical example, we illustrated the sequential update process for a dwell 

time model with two weights. We computed the likelihood of each observation, updated the 

posterior distribution using the prior and likelihood, and obtained the updated mean and 

variance of the weights. The sequential update process allows the dwell time model to adapt 

and improve its pre- dictions over time. By incorporating the observed dwell times, the 

model becomes more accurate and reliable in estimating future dwell times for unserved 

requests. The presented work highlights the application of Bayesian inference in paratransit 

routing, specifically in optimizing travel time and minimizing uncertainty in dwell time 

predictions. The sequential update process enables the model to learn from the observed data, 

resulting in improved routing decisions and better overall service quality. 

The proposed framework makes a significant contribution to the optimization of 

paratransit routing by obtaining accurate and reliable estimates for a sequence of requests 

which can be a significant portion of service time for paratransit. By simultaneously reducing 

in-vehicle travel time and uncertainty in dwell time predictions, it offers the potential for 

enhancing the overall quality of paratransit service, resulting in improved transportation 

experiences for individuals with disabilities and the elderly. Future research can explore 
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more sophisticated dwell time models and investigate the impact of different prior 

distributions on the update process. Additionally, incorporating additional factors such as 

passenger characteristics or traffic conditions can further enhance the accuracy and 

robustness of the dwell time predictions. 
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