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EXECUTIVE SUMMARY 

The purpose of this research was to determine the relationship between traffic movements 

and COVID-19 infections, and ultimately hospitalizations and deaths, throughout various U.S. 

States using the infection curve and equations from the Susceptible-Infected-Recovered (SIR) 

model. As a result of state and national governmental restrictions and public perception of the 

virus, traffic patterns were severely altered throughout the peak of the pandemic in 2020 and 2021. 

Traffic volumes experienced the greatest reduction when governmental restrictions were first 

enforced at the beginning of the pandemic and began to approach pre-pandemic values during 

2021 as facilities throughout the country reopened. The prediction model applies the traffic volume 

conditions during the initial stage of the pandemic to the entire study period to determine the effect 

traffic volumes have on COVID-19 infections. Once the observed infection data were modeled, 

the adjusted, predicted model was determined using a series of modified SIR equations that reflect 

changes in traffic, and the findings suggest infection numbers may have been reduced compared 

to the observed data for each U.S. state studied. The number of hospitalizations and deaths that 

may be reduced during the second peak given the traffic conditions from the beginning of the 

pandemic were calculated based on the predicted model results for each state. 

The findings suggested by the predicted model (e.g., a reduction in infections, 

hospitalizations, and deaths) can benefit health service facilities by limiting overcrowding and the 

shortage of ventilators, which can result in fewer deaths caused by COVID-19. This research 

provides insights for practitioners, researchers, and government entities developing and accessing 

plans for future pandemics. It is also expected that the findings of this study can be built upon by 

future researchers who continue to study various aspects of the COVID-19 pandemic and assess 

the public response to governmental actions.  
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1.0 INTRODUCTION 

The SARS-CoV-2 virus, the cause of coronavirus disease (COVID), led to a global 

pandemic following its emergence in 2019. The COVID-19 pandemic brought unprecedented 

levels of economic and social disruption. In response to the pandemic, public officials 

throughout the world issued health directives to limit person-to-person contact. COVID-19 was 

associated with 704,000 deaths in the U.S. throughout 2020 and 2021, (CDC 2022, CDC, 2023). 

However, despite the nearly ubiquitous adoption of social distancing measures, the length and 

severity of governmental actions varied from country to country, and within the United States, 

from state to state. Transportation, the movement of people and goods, has been used as a 

surrogate measure of societal interaction. Typically, for members of separate households to meet 

and intermingle, one or more trips must first be taken. This suggests that traffic counts may be 

correlated with exposure within a population. It is therefore no surprise that stay-at-home orders 

led to drastic decreases in traffic volumes throughout the United States (Parr et al. 2020).  

This research investigated the relationship between traffic reductions through the various 

phases of COVID-19 outbreaks across the U.S. in 2020 and 2021, and the subsequent effect on 

COVID-19 cases on a state basis. The initial wave of COVID-19 outbreaks began in the U.S. in 

March of 2020. During this phase of the pandemic, compliance with stay-at-home orders and 

other social distancing guidance was the highest, as measured through significant and sustained 

traffic reductions. However, as the first wave of COVID-19 infections began to wane in the 

spring and summer of 2020, phased re-openings of the economy occurred; as such, traffic slowly 

crept toward pre-pandemic levels (Kristiansson 2021). As cases began to increase again during 

the fall and winter of 2020 and early into 2021, traffic data suggests that social distancing and 

stay-at-home orders were not as effective at reducing travel in this phase. Infection rates, 
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especially within a viral epidemic, depend upon the contact patterns of people in the infected 

population. A realistic model for the spread of infection takes into account the pattern of mixing 

within a population, the virulence of the infection, the probability of transmission per contact, 

and the changes in behavior in the affected population as a result of the epidemic (De Valle et al. 

2013). An objective of this research is to investigate if the mixing of individuals, and the 

corresponding infection rates, within an affected population can be observed and predicted using 

traffic counts. Trips taken by individuals represent individuals from different households 

interacting, whether that be through recreational or essential trips, the extent of interaction 

depends on the type of trip. Human interaction, on a basic level, within a population during an 

epidemic may be synonymous with traffic volume data. This goal is achieved by developing 

Susceptible-Infected-Recovered (SIR) models that can predict infections based on observed data.  

In response to the global pandemic that made its way to the U.S., state governments 

issued State of Emergencies in early March of 2020, all within a week of each other, when cases 

first started to be tested for and confirmed within the Johns Hopkins COVID-19 database 

(Kristiansson 2021). These mandatory lockdown restrictions included stay-at-home, social 

distancing, and mask mandates that were implemented at the discretion of the Center for Disease 

Control (CDC) to control the spread of the virus throughout the country. As cases began to 

relatively decline in the following months, the spring and summer of 2020, state governments 

began to reopen the economy in a phased system, with certain mandates, including social 

distancing and wearing masks indoors, remaining enforced. There were a variety of factors that 

affected the phased reopening of States, including the severity of COVID-19 infections within 

certain States and the political makeup of the governments within each state, both of which vary 

among the ten States chosen for this study. The earliest instance of a phased reopening occurred 
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in Vermont on April 17, 2020; meanwhile, the latest reopening of the economy was witnessed in 

New York, which occurred on June 8, 2020 (Kristiansson 2021). The remaining states had initial 

phased re-openings in mid to early May, with more restrictions being lifted a month later.  

Daily traffic volume counts are used in this study to determine the amount of contact and 

social mixing that exists within a certain area. Higher levels of daily traffic volume relate to 

more trips being taken by individuals within a household, which are more likely to interact with 

an individual from a different household. Traffic volumes were observed to be lower throughout 

the study period compared to the baseline, same-day volume counts of 2019. The infections and 

traffic counts were broken up into two separate study periods, the first being defined as the initial 

peak when cases began increasing in the U.S., March to June of 2020. The second peak is 

defined as the resurgence of cases that occurred from September 2020 to March 2021 for most 

states. The average reduction of traffic during the first peak was a 41.3 percent decrease, while 

the second peak only experienced a 15.8 percent decrease in traffic. The reopening of the 

economy and lifting of governmental mandates is the most likely cause of the increase in traffic 

between the two peaks identified. 

As seen in Figure 1, the difference between traffic volumes in 2020 compared to the 

same-day volume in 2019 for New York is greater during the first peak of COVID-19 cases in 

early 2020 (53.2 percent reduction) than the second peak in late 2020 (20.1 percent reduction). 

The number of COVID-19 cases in the second peak in New York is more than twice that of the 

initial peak; however, traffic volumes during this time are approaching the values of 2019. This 

phenomenon can be seen throughout all of the U.S. States identified. This trend describes the 

public’s willingness to adhere to the lockdown mandates of their respective state began to 

decrease as time passed; similarly, the severity and enforcement of governmental mandates, 
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especially in terms of individual businesses willingness to enforce mask mandates, also began to 

wane as the months within the pandemic passed by.  

 

Figure 1: Seven-day rolling average COVID-19 cases and difference between same-day traffic 
volume in study period and 2019, including first and second peak, in New York. 

 

A crucial objective of this research is to determine if traffic counts can be used as a 

measure that can effectively flatten the curve on local, regional, and global infections. Reducing 

the maximum peak of infection curves, and total number of infections throughout the duration of 

a pandemic, can help to minimize the total number of deaths within a population. There is an 

inherent risk of health services overcrowding during an epidemic, which can further lead to a 

higher mortality rate of those infected. Almost one in four COVID-19 deaths could be 

contributed to hospitals being strained by a surging caseload (Sameer et al. 2021). A flattening of 

the infection curves in each of the states studied can help to mitigate the rise in mortality rate of 

infected individuals and potentially result in a reduction in the number of deaths throughout the 
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epidemic surge. The model created within this study will then be utilized to predict the 

reductions in total infections due to potential policy adaptions and retractions, school closure and 

phased reopening, for example. This modeling approach analyzes the counterfactuals, as to how 

the infections could potentially change if lockdown procedures and people’s behavior, in terms 

of travel movements, were the same in late 2020 and early 2021 as they were when COVID-19 

initially broke out in the U.S. This method results in the predicted infected curves that peak 

below the observed COVID-19 infection data for each state. The reduced infection curves 

describe the extent to which infections may have been reduced in each state, resulting in less 

hospitalizations overall, which reduces the strain on health services, further reducing the number 

of deaths caused by the COVID-19 virus throughout the U.S. The conclusions based on the 

results of the model created will then be used to predict the effectiveness of polices instilled by 

state government officials throughout the COVID-19 epidemic. 
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2.0 LITERATURE REVIEW 

Modeling outbreaks of pandemics has been an area of study long before the outbreak of 

COVID-19 in the U.S. and around the world. The widespread, global nature of the most recent 

virus has led to an increase in popularity and necessity for modeling the propagation of COVID-

19, and future instances of viruses, in many populations. There are many methods that can be 

utilized to model infection outbreaks, the sections that follow focus on the classical Susceptible-

Infected-Recovered (SIR) model and the Nelder-Mead Estimation approach that is used to 

determine the parameters that allow for the SIR model to be effective for multiple populations. 

The unprecedented nature of the virus and its effects on countries throughout the world led to 

many changes in societies, especially in the U.S. The main change identified in this study is the 

reduction of traffic volumes in the U.S., as well as the status of hospitals and health services as a 

response to the growing number of infection cases. The onset of infected cases as a result of 

increases in traffic volume, or increased interaction amongst those within a population, does not 

happen in the same day. The offset of positive COVID-19 tests in relation to traffic volumes was 

studied, determining the time lag in which infection cases show as a result of previous activity. 

The viral characteristics of COVID-19 are studied as seasons changed, as well as when the 

dominate variant changed, which both affected the infection rate of the virus. 

2.1 Epidemiological Models and Modeling COVID-19  

Several predictive epidemiological models were developed for countries around the 

world as a result of health and economic effects caused by this widespread COVID-19 virus. To 

predict the effects of an ongoing epidemic, the parameters that are applied to the equations that 

produce the final model must be estimated. The observed COVID-19 infection numbers for a 
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country, or state, are compiled using daily reported numbers. For the country of Algeria, a 

country with a population of 43 million, inputs for the parameter estimation for a predicted 

infection curve were the daily reported case numbers and the population according to United 

Nations reports (Lounis 2020). The parameters within this study are estimated utilizing the 

differential equations that make up the classic SIR model. The results of the study determined the 

date of the peak of infection cases and estimated 800,000 infected individuals during the study 

period; the reproduction number, R_o, is predicted to be 1.23 (Lounis 2020). A study that looked 

at populations within Pakistan created an estimation of the COVID-19 epidemic by creating a 

numerical simulation using the Non-Standard Finite Difference (NFDS) scheme, resulting in 

figures that can be interpreted and used by government agencies (Din 2021). There are several 

factors that cause changes in the number of infections within a pandemic, including changes in 

global population demographics and distribution, human behavior change, and the breakdown of 

public health systems (Church 2004). Local governmental lockdowns have a major influence on 

infections, directly causing changes in the transmission rate of individuals within a population. 

Governmental directives were the leading factor for the epidemiological simulation of the 

population in India, producing parameters that led to a flattening of the infection curve, reducing 

the epidemic spread of COVID-19 (Bagal et al. 2020).  

The well-studied classical compartmental epidemic models used in most of the above 

studies such as SIS (Susceptible-Infected-Susceptible), SIR (Susceptible-Infected-Recovered) 

and SIRS (Susceptible-Infected-Recovered-Susceptible) divide the host population into 

susceptible, infected, and recovered compartments with a set of differential equations describing 

dynamics between these different compartments (Brauer et al. 2010). Classical and fractional 

order SEIR (susceptible, exposed, infections, removed) Ebola epidemic models were used to 
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analyze and estimate epidemic parameters to create predictive models for future Ebola epidemics 

(Gendreau 2015). The use of epidemiological models was also used to counteract contagions. 

Contagions are also a part of the socio-economic issues, such as governmental intervention, 

where the use of mathematical analysis can bode favorable results in important decision-making 

processes for effective mitigation of epidemic. In the conventional SIR dynamics model, the 

population is divided into three compartments using first order differential equations (Brauer et 

al. 2010), mainly S – Susceptible, I – Infected and R - Recovered population. The parameters β 

(transmission rate per capita) and γ (recovery rate) govern the rate at which populations move 

from one compartment to another, respectively. The β rate parameter is the rate at which 

susceptible population becomes infected during an epidemic. The γ rate parameter determines 

the rate at which infected individuals recover from the infection causing epidemic. Unlike the 

SIS, SEIR and SIRS dynamics models, the SIR model operates with the assumption that 

recovered individuals gain immunity from the contagion and do not get infected again. It is one 

of the simplest forms of epidemiological model with only two constant rate parameters 

governing the dynamics of the model. (Islam 2019). 

2.2 Control Methods in Epidemiological Models  

The least-squares method is used for the estimation of parameters with the highest 

probability, or maximum likelihood, of being correct given some critical assumptions. The 

Nelder-Mead Estimation method is a method that is described for the minimization of a function 

with certain variables, which depends on the comparison of function values at the vertices of a 

general simplex, followed by the replacement of the vertex with the highest value by another 

point (Nelder 1965). The simplex created adapts itself to the local landscape and contracts onto 
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the final minimum; the method is effective and computationally compact (Nelder 1965). The 

Nelder-Mead Estimation, a least-squares method, can accurately predict parameters for SIR 

model equations based on observed infection data. The COVID-19 epidemic progression in 

Cameroon was modeled through the early stages of 2020 by using Nelder-Mead Estimation to 

find the parameters, leading to the conclusion that the peak of infections could have occurred at 

the end of May, with 7.7 percent of the population being infected out of the 25 million 

population; this conclusion and usage of this estimation method does not include the intervention 

of governmental mandates (Nguemdjo 2020). There are a few coding languages that utilize this 

method of least-squares, and more specifically Nelder-Mead Estimation, a number of which were 

utilized for the aforementioned COVID-19 modeling studies.  

2.3 Traffic Mobility as a Result of COVID-19 

COVID-19, closures, and other measures have had significant impacts on general 

mobility. In the Netherlands, 80 percent of people had an overall trip reduction of 55 percent due 

to a reduction in outdoor activities (de Hass et al. 2020). A study in Australia showed that 

household trips were reduced by more than 50 percent across all modes of travel. Transit trips 

were reduced from 14 percent pre-lockdown to only seven percent (Beck and Hensher 2020). 

Traffic volumes in Florida dropped by 47.5 percent looking at roadway detectors across the state 

(Parr et al. 2020).  

Other studies examined the association between COVID-19 spread and mobility 

reductions. Carteni et al. (2020) conducted a study in Italy using a multiple linear regression 

model to show the similarity between positive COVID-19 cases and transportation accessibility 

in an area. Accessibility contributed about 40 percent in weight to new COVID-19 cases and 
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weighted heavier than the other variables. The greater the transport accessibility is of an area, the 

easier it is for the virus to reach the population. The authors stated that the study shows that a 

more sustainable policy for restrictions and lockdowns to containing social interactions, could be 

to look more closely to the proportionality of transport accessibility in the area of interest. The 

greater the accessibility is, the more restrictive policies on mobility should be implemented 

(Carteni et al. 2020). Another study in the United Kingdom, described how mobility reductions 

caused significant decreases in COVID-19 cases (Hadjidemetriou et al. 2020). A study on the 

relationship between daily trips in the U.S. and the COVID-19 infections in the near future used 

time-series forecast models to project future trends from November 2020 to February 2021 

(Truong & Truong 2021). The study discovered a closed loop scenario, where people’s travel 

behavior dynamically changes depending on their risk perception of COVID-19 in an infinite 

loop. This loop can only be broken if proper and prompt mitigation strategies are put in place to 

reduce the burden on hospitals and healthcare systems, thus saving more lives. 

Mobility reduction has an impact on the spread of COVID-19. Mobility data from Google 

were applied to the effective reproduction rate, R_t, a measure of viral infectiousness (Noland 

2021), to understand the impact from reducing six different trips and activates. The study shows 

that “Staying at home” is effective in lowering the R_t value. “Activities at parks” appear to not 

have a significant effect on increase R_t. A return to baseline levels of activity for transit, 

workplaces, and retail, will increase R_t. 20–40 percent of mobility reductions are needed to 

attain an R_t below 1.0. A reproduction number below 1.0 is the point at which a disease will 

perish within a population, above 1.0 and the disease will spread more quickly. The World 

Health Organization initially estimated the reproduction number for COVID-19 to be 1.4-2.4 
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(Achaiah 2020). Noland (2021) cautions policy makers about encouraging people to return to 

normal mobility behavior, particularly when it comes to, transit, workplaces, and retail locations.  

A study in Japan showed that during the initial stage of the pandemic, no strong 

restrictions, such as lockdowns, were put in place by the government (Hara & Yamaguchi 2021). 

Even though there were no major restrictions, the study detected nation-wide behavioral change 

using mobile phone network mobility data. During the “state-of-emergency” in Japan, results 

showed a significant reduction in inter-prefectural travel and trips without strong restrictions 

from the policymakers. Another interesting finding was that the population density index 

decreased by 20 percent as people avoided traveling to these densely populated areas. The study 

showed that after the state of emergency was lifted, people’s behaviors did not immediately 

return to pre-pandemic levels, but instead, recovered slowly. A study in Poland looked at the 

overall reduction in travel time after the Polish government introduced administrative measures 

to slow down the spread of COVID-19. A significant decrease in travel times was observed, with 

no difference between age groups and gender. The more a respondent experienced a fear of 

COVID-19, the more he or she shortened their daily travel time and stayed closer to home. 

(Borkowski 2021). 

2.4 Governmental Directives as a Result of COVID-19  

The impact of policymakers and governmental stringency has a major impact on people’s 

actions and adherence to social distancing. Wang (2021) assessed the impact of national culture 

and government policies from major economies, on social distancing to lower the spread of 

COVID-19. Government enforcement has a much larger impact on social distancing than what 

national culture does. There is clear proof that social distancing increases with government 
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stringency. There are two cultural dimensions that matter when it comes to social distance: it 

decreases with ‘Long-term Orientation’; and increases for ‘Indulgence’. The results show that it 

is necessary for policymakers to act decisively instead of blaming the culture (Wang 2021). 

Lower COVID-19 infection and mortality rates have been shown to be linked to stricter 

enforcement policies and more severe penalties for violating stay-at-home orders (Mahmoudi et 

al. 2021). Policies that allow gradual relaxation of travel restrictions, social distancing and 

facemask usage, are connected to lower COVID-19 infection and mortality rates (Wang 2021). 

A study on China, constructed a city-based epidemic and mobility model (CEMM) to 

stimulate the spatiotemporal of COVID-19, using multi-agent technology and big data on 

population migration (Wei et al. 2021). The urban network perspective model emphasizes the 

important role of high-speed transportation networks and intercity population mobility. The 

model was able to simulate the initial stage of the inter-city spread of COVID-19 with high 

precision. The simulation showed that the total number of infectious cases in China would have 

been 4.46 times higher, 138,824 cases in February 2020, if the city lockdown decreasing 

population mobility did not occur (Wei et al. 2021). 

2.5 Heath Service Overcrowding 

The quick and widespread onset of the novel Coronavirus in the United States caused 

strain upon health services in many U.S. States. Hospitals experienced emergency department 

and intensive care unit overcrowding, as well as a shortage of ventilators since COVID-19 

affects the respiratory system of the infected individual. Of 625 hospitals throughout 29 U.S. 

States, 63 percent of hospitals experienced at least one of the aforementioned alerts from March 

7, 2020, to April 30, 2021. Of the hospitals that experienced at least one instance of lack of 
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emergency services, 63 percent experienced emergency department overcrowding, 61 percent 

experienced ICU overcrowding, and 12 percent experienced ventilator shortages (Sandhu et al., 

2022). The strain on health service centers throughout the country limited the amount and quality 

of care individuals were able to obtain once admitted to a hospital. During July 2020 to July 

2021, which included the SARS-CoV-2 B.1.617.2 (Delta) variant, it was predicted that as 

intensive care unit beds were at 75 percent capacity, this resulted in 12,000 excess deaths two 

weeks later. This is compared to when hospitals experienced 100 percent capacity of intensive 

care unit beds, a predicted 80,000 deaths were expected in the two weeks following (French 

2021). Reducing the number of infections in critical areas can lead to the reduction of admittance 

into hospitals as a result of COVID-19, ultimately leading to a reduction of deaths in the weeks 

following.  

2.6 Reduced Mobility Impact on Traffic Crashes and Fatalities  

An investigation in Connecticut studied the impact of COVID-19 stay at home orders on 

daily vehicle miles traveled (VMT) and motor vehicle crashes (Doucette et al. 2021). Looking at 

the crash severity and number of vehicles involved in crashes from January through April, the 

study found that the daily VMT decreased by 43 percent. A decrease in daily counts of crashes 

was noted, but the single vehicle crash rate increased 2.29 times and the single vehicle fatality 

rate increased 4.10 times. The study concluded that the potential role of reduced police presence, 

less congested roads, and speeding could contribute to these results. The high speed-related fatal 

crash rate in Japan during the COVID-19 lockdown were higher than pre-lockdown (Inada 

2021). The authors reviewed police data on crash fatalities between January 2010 and February 

2020 in which motor vehicle drivers were at fault and found that speeding, speed enforcement by 
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police, and driver behavior during lockdown were leading causes for the increase in crash 

fatalities. Traffic crash patterns before and after the outbreak of COVID-19 in Southern Florida 

for the first half of the years of 2019 and 2020 (Lee & Abdel-Aty 2021), shows a considerable 

reduction during March to June 2020. The total numbers of crashes decreased by 21 percent, 

with the most significant reductions occurring during morning peak-hour (33.3 percent), crashes 

involving alcohol/drug (58.0 percent), and pedestrian crashes (38.3 percent). Another study in 

Florida (Pierre et al., 2021), looked at the impacts of the COVID-19 pandemic on traffic crashes 

on freeway (I-10, I-75, and I-95). The paper showed that since the first confirmed COVID-19 

case in Florida, there was a decrease in the total traffic crashes, dropping significantly by up to 

45.3 percent. A decrease in the rear-end crashes and an increase in the run-off-road were 

observed. Calderon-Anyosa & Kaufman (2021) conducted studies on external causes of death 

such as suicide, homicide, and car crashes during COVID-19. The authors wanted to understand 

how violent and accidental deaths were impacted by the COVID-19 lockdowns. After the 

lockdown, all forms of deaths suddenly dropped. The largest decrease was seen in traffic related 

accident deaths, with a reduction of 12.22 and 3.55 deaths per million per month men and 

women, respectively. Homicide and suicide presented a similar decrease in the initial stages of 

the lockdown for women while homicide in men increased by 6.66 deaths per million men per 

year (Calderon-Anyosa & Kaufman 2021). 

2.7 Reduced Mobility Impact on Air Quality  

Prior research has investigated the environmental impact of the COVID-19 global 

pandemic, social distancing, and subsequent changes in human behavior on air quality. Local 

lockdowns within states, cities, or whole countries, helped in improving the air quality (Carteni 
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et al. 2020). Changes in traffic volumes had a direct impact on air quality within the United 

States. For a study conducted in Florida, traffic volumes and air pollutant concentrations were 

collected for the span of the pandemic throughout 2020, including the time periods 

encompassing the lockdown, pre-lockdown, and post-lockdown. During this lockdown period, 

when the percent change in traffic volumes was the largest compared to 2019, Ozone levels 

experienced a decrease of 21.3 percent for a monthly average, CO had a reduction of 13 percent 

and NO2 concentrations decreased by an average of 14 percent for this same time period. PM2.5 

concentrations lagged behind the other pollutants, decreasing by 26 percent in the post-lockdown 

period throughout May (El-Sayed 2021). The reduction of the NO2 pollutant was observed due 

to the reduction of vehicular emissions, while other factors could have caused decreases in the 

other pollutants. Light vehicles experienced higher changes in volume compared to heavy 

vehicles, most likely due to the importance of trips taken by light vehicles being less critical 

when governmental mandates were being enforced throughout Florida.  

In Italy, an analysis of its carbon footprint indicator found the country’s carbon footprint 

shrank by approximately 20 percent (Cartenì et al. 2020). Lockdown and social distancing 

created a decrease in traffic movements, which correlated to a direct decline in PM2.5 

concertation. (Chauhan & Singh 2020). After observing air quality, meteorological parameters, 

and mobility in six major Italian cities, the authors found that road traffic was reduced by 48-60 

percent, NO2 reduced by 24-59.1 percent, and PM2.5 by 17 percent. O3 levels remained 

essentially unchanged or showed a slight increase of up to 11.4-14.7 percent (Gualtieri et al. 

2020). Most studies focused on the impact on PM2.5, NO2, and ozone since these are criteria 

pollutants, and they can harm people’s health and the environment and cause property damage. 
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An analysis of 50 capital cities worldwide found a 12 percent decrease in particulate 

matter emissions (PM2.5) (Rodríguez-Urrego 2020). An analysis in Wuhan City, China found 

the average monthly air quality index, improved by 33.9 percent during the lockdown and PM2.5 

decreased by 36.5 percent. Nitrogen dioxide (NO2) decreased by in the city by 53.3 percent. 

However, Ozone (O3) increased by 116.6 percent (Lian et al. 2020). An analysis conducted in 

Rio de Janeiro, Brazil also found increased levels of O3 while showing decreased levels of NO2 

and carbon monoxide (CO) (Siciliano et al. 2020). An investigation in the continental United 

States found NO2 reductions of 25.5 percent and statistically significant reductions of PM2.5 

(Berman & Ebisu 2020).  

2.8 COVID-19 Case Date Offset 

When exposed to COVID-19, symptoms usually take about five days to appear in a 

newly infected person. Some people experience symptoms as soon as two days after being 

exposed. The majority of people infected show COVID-19 symptoms after 12 days, and most 

people were sick by day 14 (Nazario 2020). Another study on 181 confirmed cases shows an 

incubation time of 5.1 days for COVID-19 and 97.5 percent of the study group experienced 

symptoms within 11.5 days of being infected by the virus. In some cases, people develop 

symptoms after 14 days of being exposed (Lauer et al. 2020). A study conducted on COVID-19 

reporting in New York City estimated a mean delay in reporting as five days, with 15 percent of 

cases reported after ten or more days (Harris 2020). Two other studies conducted by Parr et al. 

(2020, 2021) were temporally offset from the traffic data by two weeks (that is, the COVID-19 

case data is reported for the date two weeks prior to its posting). Kristiansson (2021) explains 

that health data was temporally offset from traffic data to associate the extent of COVID-19 
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cases to traffic conditions during the approximate time when the infection occurred. A 

correlation analysis between the number of daily cases and the decrease in traffic from 2019 to 

2020 was conducted and found that, for the 13 regions identified, the average days offset was 

five (Kristiansson, 2021). The Centers for Disease Control and Prevention (CDC) recommend 

this period to account for viral incubation and testing time (CDC, 2024).  

2.8. COVID-19 during Winter Months  

Contaminations caused by many respiratory viruses, including influenza and some 

coronaviruses, increase during winter and decrease during summer (Mallapaty 2020). An 

increased risk of transmission occurs when people interact indoors and in places with poor 

ventilation. Studies show that the COVID-19 virus favors dry, cold conditions. The virus 

degrades faster on surfaces in more humid and warmer environments. During the winter period, 

people will usually heat their houses and the air is dry and not well ventilated. The Director for 

Centers for Disease Control and Prevention (CDC) Robert Redfield predicted that the COVID-19 

pandemic would take a severe turn for the worse during the winter months (McEvoy 2020). 

Redfield stated that January and February will be the hardest time for the US, in all history of 

public health. He also predicted that the death toll rate would increase by 50,000 every two 

months, resulting in 450,000 deaths by the end of February. CDC released warnings and advised 

against traveling for Thanksgiving and the holidays. Nine million airport travelers were reported 

during the holiday period (Newburger 2020). A coronavirus task force coordinator from the 

White House, Dr. Deborah Birx, made a statement saying that the U.S. will be seeing a large 

increase in new COVID-19 cases, deaths, and hospitalization in the whole country after the 

holidays.  
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A review of the literature mentioned shows that there is a gap in COVID-19 infection 

models for U.S. States. A vast amount of research has been done in modeling the early stages of 

COVID-19 in many countries, however, there exists a need to show how infections interact with 

other factors in a society. Traffic volumes can be a leading indicator for infections as it 

represents the behavior of the population and how it is interacting with itself. There exists a need 

for an analysis of how governmental directives play a role in the onset of infections, many of the 

literature reviewed mentions that governmental directives have a role in the number of 

infections; however, each scenario is not thoroughly addressed and modeled, providing 

numerical results. This study seeks to provide data that can be utilized at the state or national 

level as insight on the effect that mandates and restrictions can have on hospitalizations and 

deaths in a population for future cases of viral outbreaks. The research presented seeks to build 

upon the prior knowledge and expand the scientific understanding of SIR modelling and the 

many factors and social interactions that exist between infections and traffic. 
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3.0 METHODOLOGY 

Traffic volumes from 2019-2021 and COVID-19 case infection rates between initial and 

second wave outbreaks were analyzed for ten U.S. States.  This data was used to obtain the rate 

parameters within the SIR model for the respective states identified for the two phases 

separately. The parameters are utilized within the classical SIR model equations to be able to 

model the propagation of cases during a certain period of time. These rate parameters are then 

correlated to traffic reductions compared to the 2019 baseline. For all the states identified 

throughout the U.S., the second peak of COVID-19 cases was much greater than the original 

peak in March and April of 2020, as the data will show in the remainder of this section.  

However, the traffic reduction was much higher in the first phase, indicating more effective 

social distancing and reduced exposure. The increased number of cases in the second peaks were 

likely due in part to the reopening of states, resulting in a higher number of vehicle counts and 

trips being made throughout the country, leading to more exposure of those within the 

population.  

The objectives of the data and methods used in this research are to develop a model that 

can be utilized to predict the number of infections in ten U.S. States. The number of infections 

can then predict the extent of hospitalizations and deaths that may be reduced from these 

populations. This section provides details on the type of data that was collected and manipulated 

for the analysis, as well as the methodology for the model formulation that was applied 

throughout the study. 
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3.1 Data Sources 

3.1.1 Traffic Data and Statistics  

This study includes traffic data collected from the Department of Transportation (DOT) 

of various U.S. States. The Federal Highway Administration (FHWA) in the United States 

mandates that every state DOT submit annual traffic statistics as part of the National Highway 

Performance Monitoring System, or HPMS (USDOT 2016). Transportation agencies in every 

state construct, operate, and maintain permanent traffic monitoring stations with the purpose of 

collecting traffic count information, among other measures. These stations are referred to as 

continuous count stations. To meet the federal requirements outlined by the HPMS, the traffic 

count detectors report hourly traffic counts continuously throughout the year, every year. The ten 

states identified in this study publish their traffic count data as publicly available through data 

requests (FL), through data files on public websites (NY), or have permitted a third-party vendor 

to share HPMS data publicly online (IL, IN, MA, MI, MT, NH, OH, VT). Illinois, Indiana, 

Michigan, and Ohio are in the Midwest region of the U.S., and the states have 91, 56, 73 and 182 

traffic detectors, respectively. Florida is in the southeast region of the U.S. and has 276 traffic 

detectors. Montana is in the northwestern part of the U.S. and has 91 traffic detectors. New York, 

New Hampshire, Massachusetts, and Vermont are located in the northeastern region of the U.S., 

and they have 137, 52, 82, and 32 traffic detectors, respectively. The distribution of the number 

of urban and rural detectors can be seen in Table 1. The states chosen for analysis in this research 

were based on availability of traffic volume data, as well as geographic location. A diverse array 

of geographic regions within the U.S. are represented by the states chosen to provide a variety of 

political and geographic variables. The diversity of states also displays general traffic differences 
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based on existing transportation infrastructure that can influence the adherence to governmental 

mandates and on overall infections within the predicted model. Same-day equivalent traffic 

volumes were analyzed throughout this study to avoid normal changes in traffic due to the day of 

the week. The traffic data from 2019 was offset accordingly, depending on the time of the year, 

to compare same-day traffic volumes, a Monday in 2019 with a Monday in 2020, etc.  

Table 1: U.S. State quantity and type of continuous count stations 

State Urban Detectors Rural Detectors 
New York 17 118 

Florida 120 95 
Massachusetts 43 7 

New Hampshire 22 26 
Illinois 54 25 
Indiana 14 30 
Ohio 105 65 

Michigan 31 34 
Montana 14 73 

 

Due to a majority of U.S. States having HPMS data publicly available across the same 

web application, the mass amount of data that needed to be compiled for this research study was 

able to be done in an efficient and automated manner using code script within MATLAB. The 

cloud-based software MS2: Modern Traffic Analytics publishes the HPMS data per count station 

per month for each of the state DOTs. The traffic volume data compiled for this study had no 

distinction of vehicle class and the counts were aggregated for 24-hour periods for the date 

periods identified. Traffic count data was compiled from January 1, 2019, to May 30, 2021, for a 

total of 1,072 count stations throughout the ten states identified in this study. More than 940,000 

daily traffic volumes were collected for this research topic. The programming and numeric 

computing platform, MATLAB, was utilized to aide in the accumulation and concatenation of all 
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the traffic volumes and the corresponding count station and date. A code script was written that 

parsed the corresponding DOT data website, downloading the appropriate count station for the 

date period identified. The MATLAB script can be seen in Appendix A. Another script was 

written that compiled the downloaded CSV files for each count station for each month into a 

single array from a matrix that could be transposed into a central Excel spreadsheet, also found 

in Appendix A. This automated process allowed for more data to be included in the study as it 

became readily available on the MS2 database, allowing for more robust and accurate 

information to be processed.  

3.1.2 Traffic Data Irregularities  

A common error found in the traffic data was missing data which was reported as a zero 

value for the volume from the station. The reason for the zero value may be due to road closures 

because of scheduled maintenance, incidents, or malfunctioning sensors. When missing data 

occurred in the dataset, the sensor was removed from consideration for that day, but still 

included in the analysis for other days when data was available. Some days were shown as 

“NaN” or “Null” values. These were similarly removed for the aforementioned case; however, 

the sensor was considered in the analysis when the data was available for other days. This 

resulted in the daily number of observations varying for different stations.  

3.1.3 COVID-19 Data  
 

The COVID-19 data for this research was compiled from the Johns Hopkins COVID-19 

dashboard from January 1, 2020 to May 30, 2021. The early stages of the pandemic were 

characterized by low initial infections, as uncertainty about the virus was common and the 
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population generally adhered to stay at home mandates throughout the country. As cases began 

to spike in early March for most states, emergency mandates were issued throughout all the U.S. 

States studied. The dates of the declaration of these initial emergency mandates can be seen in 

Table 2. At the onset of these State of Emergencies, or shortly thereafter, public schools and 

restaurants were closed on a grand scale throughout the U.S. The volume of traffic and number 

of infection cases during this initial lockdown period is described as the first peak throughout 

this study. The modeling portion of this study required the number of cases for the first and 

second infection peaks, the first peak for all states occurred in the early part of 2020. The second 

peak of infections occurred after states began to lift restrictions and mandates; this second peak 

occurred in the winter of 2020 and most instances lasted into the beginning of 2021, only Florida 

had the second peak of infections end before 2021.  

 

Table 2: Governmental directives as a response to the COVID-19 pandemic in the U.S 
(Kristiansson, 2021). 

State State of 
Emergency 

Schools 
Closed 

Restaurants 
Closed 

Phase 
1 

Phase 
2 

Phase 
3 

Phase 
4 

Phase 
5 

New York 3/7 3/16 3/16 6/8 6/19 7/6 7/20 N/A 
Florida 3/9 3/13 3/20 5/18 6/5 9/25 N/A N/A 

Massachusetts 3/10 3/17 3/17 5/18 6/8 7/6 N/A N/A 
New 

Hampshire 
3/13 3/16 3/16 5/18 6/15 6/29 8/24 N/A 

Illinois 3/9 3/13 3/17 5/1 5/29 6/26 N/A N/A 
Indiana 3/6 3/19 3/16 5/4 5/22 6/11 9/26 N/A 

Vermont 3/13 3/18 3/17 4/17 5/22 6/8 7/10 9/18 
Ohio 3/9 3/16 3/16 5/12 6/22 8/25 N/A N/A 

Michigan 3/10 3/16 3/16 5/7 6/1 6/10 N/A N/A 
Montana 3/12 3/16 3/21 4/27 6/1 N/A N/A N/A 
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3.2 Data Analysis 

Observed COVID-19 infection data was plotted for each of the ten states to determine the 

time period that the infection rates peaked throughout 2020 and 2021. After the initial mandatory 

lockdowns, when COVID-19 cases first started developing in the U.S., there was a peak in 

infection numbers in early April of 2020 that lasted until late June, and in some instances, early 

July. This peak is categorized as the “first” peak of cases. When lockdown restrictions began to 

loosen in the following months, and phased reopening occurred, infection numbers peaked again 

in late 2020, or early 2021, in some instances; this peak is categorized as the “second” peak and 

involved more overall cases than the first peak in all the states studied.  

Governmental directives changed occasionally throughout the duration of the pandemic, 

most drastically in the early stages of the virus’s development in early 2020. The response of 

state governments was similar throughout the country, aligning with national mandates, during 

the onset of the rise in COVID-19 cases in the U.S. in early March of 2020. It was during this 

time when states of emergency were declared for all the U.S. States. The flux of infections 

during this time period throughout the country is determined as the first peak in this study, both 

in terms of the number of infections, as well as the behavior of the population in response to 

governmental directives and groupthink. The main difference between the behavior of different 

states was the way in which the phased reopening of the economy was initiated in the months 

following the first peak of cases. Based on executive orders and official governmental websites, 

many states provided a written approach on how and when which parts of the economy were 

reopened and to what extent (Kristiansson 2021). The second peak referred to in this study is the 

corresponding number of infections and loosened governmental restrictions that occurred during 

this phased reopening period that all states experienced. The key dates from these phased 
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reopening announcements were collected to provide a roadmap of how governmental directives 

changed as a response to the pandemic and are summarized for each state in Table 2. The 

description and goal of each reopening phase varied from state to state and were published by 

each state’s government as a public health initiative.   

3.3 Model Formulation 

SIR models divide the host population into susceptible, infected, and recovered 

compartments with a set of differential equations describing dynamics between these different 

compartments (Allen 2008). The well-studied classical compartmental SIR epidemic model is 

reformulated to incorporate the effect of the changes in the traffic volume on infectious disease 

spread. In terms of differential equations, a simple form of the SIR model can be specified as 

follows:  

𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑡𝑡

= 𝛽𝛽∗𝑑𝑑(𝑡𝑡)∗𝐼𝐼(𝑡𝑡)
𝑁𝑁

      (1.1) 

𝑑𝑑𝐼𝐼(𝑡𝑡)
𝑑𝑑𝑡𝑡

= 𝛽𝛽∗𝑑𝑑(𝑡𝑡)∗𝐼𝐼(𝑡𝑡)
𝑁𝑁

− 𝛾𝛾 ∗ 𝐼𝐼(𝑡𝑡)    (1.2) 

𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑡𝑡

= 𝛾𝛾 ∗ 𝐼𝐼(𝑡𝑡)      (1.3) 

 

Here S, I, and R denote the susceptible, infected, and recovered populations respectively, 

and the parameters β and γ represent the transmission rate and recovery rate, respectively. The 

classical SIR equations, equations 1.1, 1.2, and 1.3, were used to model the observed infection 

data, which produced an estimation for the transmission rate and recovery rate parameters. These 
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equations and parameters were then used as the baseline for the infection curves and represented 

the observed data. 

There are several studies that have utilized SIR models for COVID-19 spread in Europe 

and the United States; these studies can provide the details of the dynamic parameters. Further, 

the transmission term, β, is often qualified in models to account for factors, like social separation 

policies induced by governmental mandates, that reduce the transmission. In order to determine 

the relationship between traffic counts and COVID-19 infections, the SIR differential equations 

have been modified to incorporate the effect of traffic, and reducing the transmission rate, 𝛽𝛽2, as 

follows:  

𝐼𝐼2(𝑡𝑡) = 𝐼𝐼(𝑡𝑡) − 𝛥𝛥𝐼𝐼    (1.4) 

𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑡𝑡

= 𝛽𝛽2∗𝑑𝑑(𝑡𝑡)∗𝐼𝐼2(𝑡𝑡)
𝑁𝑁

    (1.5) 

𝑑𝑑𝐼𝐼2(𝑡𝑡)
𝑑𝑑𝑡𝑡

= 𝛽𝛽2∗𝑑𝑑(𝑡𝑡)∗𝐼𝐼2(𝑡𝑡)
𝑁𝑁

− 𝛾𝛾 ∗ 𝐼𝐼2(𝑡𝑡)  (1.6) 

𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑡𝑡

= 𝛾𝛾 ∗ 𝐼𝐼2(𝑡𝑡)     (1.7) 

β, or the infection rate, is multiplied by a traffic value to achieve an SIR curve that 

produces a total number of infections for the given time period, calculated through integration of 

the infection curve, which is lower than the observed infection curve. The differential of 

infections from the observed data to the predicted data is the variable ΔI, as seen in equations 1.4 

and 1.11. The ΔI value is calculated by determining how many vehicles would have been absent 

from the roadway in the second peak, given the percent change in volumes from the first peak, 

ΔT, and multiplied by the regression value, as shown in equation 1.11: 
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𝑇𝑇2 = 𝑇𝑇𝑏𝑏 ∗ (1 − 𝑝𝑝2)    (1.8) 

𝑇𝑇1 = 𝑇𝑇𝑏𝑏 ∗ (1 − 𝑝𝑝1)    (1.9) 

𝛥𝛥𝑇𝑇 = 𝑇𝑇2 − 𝑇𝑇1     (1.10) 

𝛥𝛥𝐼𝐼 = 𝛥𝛥𝑇𝑇 ∗ 𝑛𝑛     (1.11) 

where 𝑇𝑇2 is the observed traffic count during the second peak and 𝑇𝑇1 is the predicted traffic count 

for the second peak based on first peak conditions. 𝑝𝑝2 is the percent decrease in traffic in the 

second peak and 𝑝𝑝1 is the percent decrease in traffic of the first peak. The total reduction in 

traffic volumes is denoted by ΔT in equation 1.10. The value resulting from the integration of the 

observed infection curve was reduced by this ΔI value to result in the reduced infection curve. 

The resulting parameters, notably the new β rate, found in equation 1.6, were determined based 

on the reduction in overall cases. The predicted infection curves were plotted using equations 

1.5, 1.6 and 1.7.  

Once the general timeframe of both the first and second peaks were determined for the U.S. 

States, an infection curve from the classical SIR model could be fit to the observed COVID-19 

case data gathered from the Johns Hopkins database for each of the ten U.S. States. The Nelder-

Mead Estimation method was used to fit a predicted infection curve to the data for each of the 

two peaks, using the least squares estimation technique. The date range for each of the state’s 

second peak COVID-19 infections were determined based on the mean absolute error of the 

predicted model analysis. The extent of the second peak for each U.S. state was determined, then 

the Nelder-Mead Estimation model was run varying the initial and end dates alternatively by ten 

days in each direction, determining the mean absolute error for each iteration. The date range 

that encapsulated observed second peak COVID-19 infections and produced the minimum mean 
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absolute error were used for the predicted model. The result estimated by the model based on the 

observed data produced a beta and gamma value, which are the parameters within the SIR model 

equations; these parameters, along with the number of susceptible individuals in each state, could 

then be used to model infection curves independent from the observed data. The estimation of 

contact and recovery rate parameters that make up the infection curve within an SIR model 

included the use of Fisher information matrices and negative log likelihood functions to achieve 

a curve that fit the observed COVID-19 data for the U.S. States studied. The process was run 

with a Python script in a Google Colaboratory notebook, as seen in Appendix B, and various 

iterations of the model were tested to create the predicted infection curves for the second peaks 

for all ten U.S. States. The original code that utilizes Nelder-Mead Estimation to predict 

parameters for COVID-19 was collected from GitHub, called param-estimation-SIR by Marisa 

Eisenburg (2017). The code needed an overhaul of changes that could modify the existing SIR 

equations to reflect equations 1.4-1.7. As all ten U.S. States needed to be modeled, a number of 

variables were created that reflected each state, including start and end dates and population 

numbers. A separate script was written in Google Colab that contained equations 1.1-1.3 and 1.5-

1.7 and utilized the parameters obtained from this initial calculation, as found in Table 4; this 

script also provided the final observed and predicted infection curves for all of the ten states, and 

the script can be seen in Appendix B.  

One of the objectives of this study is to determine the relationship between traffic volumes 

and infection rates within a population. The predicted infection curves that are the end output of 

the methodology, are shown to reflect the number of infections during the second peak that result 

from the percent change of volumes being the same as the percent change of traffic volumes in 

the first peak. This methodology represents a population in the second peak that has similar 
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characteristics of the population during the initial outbreak of COVID-19 in the U.S. A linear 

regression analysis was completed for each state during the first peak to determine the 

relationship between changes in traffic volumes and ensuing COVID-19 cases, which were 

analyzed during a five-day lag after the traffic volume counts. The five-day offset of daily 

reported cases is based on a correlation analysis between the reported cases and decrease in 

traffic from 2019 to 2020 (Kristiansson 2021). The number of days offset varied from zero to 28, 

and the final offset was determined by the value of the correlation analysis which was closest to -

1. Out of the ten U.S. States analyzed, the average days offset is five days, which is the value 

applied to the linear regression analysis in this study (Kristiansson 2021). To calculate the 

change in infections due to this reduction in traffic, the value of the slope from the linear 

regression analysis of the change in traffic volumes to the number of COVID-19 cases, as 

calculated as a seven-day average with a five-day lag, was multiplied by the difference in actual 

and calculated 2020 traffic volumes. The results of the regression analysis can be seen in Table 

3, the slope of the linear equation between changes in traffic and COVID-19 cases is described 

by the variable n. This relationship is applied to traffic volumes in the second peak to determine 

the number of infections that may have been reduced in the scenario where traffic volume 

change, as a percentage, was the same as that of the first peak, ΔI from equation 1.11. The 

contact rate, 𝛽𝛽2, in the modified SIR equations represents the transmissivity that reflects the 

predicted infection curve, as found in equation 1.6.  
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Table 3: Regression analysis results for changes in traffic and COVID-19 infections. 

State N (millions) n 𝐑𝐑𝟐𝟐 

New York 19 .00073 .079 

Florida 21 .00016 .258 

Massachusetts 7 .00125 .476 

New Hampshire 1.5 .00004 .046 

Illinois 12.5 .00078 .059 

Indiana 7 .00036 .282 

Ohio 12 .00004 .012 

Vermont .65 .00038 .428 

Michigan 10 .00067 .306 

Montana 1 .00007 .226 

 

The parameters calculated from the predicted SIR model based on the observed infection 

data and the number of susceptible individuals for each state, taken from population counts 

provided by U.S. Census data, were used to predict infections within each state. The parameter 

for number of susceptible persons in each simulation can be found in Table 3 as N. The n factor, 

or the slope calculated from the linear regression analysis of the first peak, represents the 

relationship between traffic volumes and infection rates per state while adherence to 

governmental mandates was at the highest. Population density data was compiled from Statista 

(2020) for each of the U.S. states and can be found in Table 5. Population density data is used to 

identify the relationship between population density and the n factor. States with a higher 

population density might tend to have a higher contact rate amongst people within the 

population, leading to changes in traffic having a greater impact on the reduction of overall cases 

and more of a flattening of the infection curve. To determine the effect that the mandatory 

lockdown had on traffic volumes, and ultimately COVID-19 infections, the beta variable in the 
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SIR model during the second peak was altered to represent an infection curve that could 

potentially result from lower traffic volumes. The total percent change in traffic volumes in the 

first peak of COVID-19 infection, the peak during March and April of 2020, is the baseline value 

used for each U.S. state, as seen as % traffic reduction first peak in Table 4. As traffic volumes 

were higher during the second peak due to fewer stay-at-home restrictions, the percent change in 

traffic volumes from 2019 to 2020 was lower, compared to the first peak, as seen as % traffic 

reduction second peak in Table 4. The difference between the calculated, predicted volume and 

the actual 2020 traffic volume is determined as the number of vehicles, seen as ΔT in equation 

1.10, that would be absent from the road if the quarantine restrictions from the beginning of the 

pandemic were replicated during the dates of the second peak. The reduction in traffic counts are 

then used to determine how many infections may have been reduced throughout the second peak, 

seen as ΔI in equation 1.11. Another objective was to determine the potential hospitalizations and 

deaths that may have been prevented based on the reduction of infections. The overall flattening 

of the curve and reduction of overall cases within a population relies on the contact rate, as well 

as the number of susceptible persons within the population, due to the contact rate in the SIR 

equations being directly affected by the number of people within the population, N. The total 

number of reduced hospitalizations and deaths from the observed data to the predicted data is 

based on the corresponding rates for each state for the date period in which the second peak 

occurred:  

𝛥𝛥𝛥𝛥 = # 𝐴𝐴𝑑𝑑𝐴𝐴𝐴𝐴𝑡𝑡 𝑝𝑝𝑝𝑝𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑝𝑝 𝑐𝑐𝑐𝑐𝑝𝑝𝑐𝑐𝑝𝑝𝑐𝑐𝑐𝑐𝑝𝑝𝑑𝑑 𝑝𝑝𝑝𝑝𝑑𝑑 𝑝𝑝𝐴𝐴𝑝𝑝𝑝𝑝𝑝𝑝𝑐𝑐𝑡𝑡𝑝𝑝𝑑𝑑 𝑤𝑤𝑝𝑝𝑡𝑡ℎ 𝐶𝐶𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶−19
# 𝐼𝐼𝑝𝑝𝑐𝑐𝑝𝑝𝑐𝑐𝑡𝑡𝑝𝑝𝑐𝑐𝑝𝑝𝑝𝑝

∗ 𝛥𝛥𝐼𝐼   (1.12) 

𝛥𝛥𝛥𝛥 = # 𝐶𝐶𝑝𝑝𝑝𝑝𝑡𝑡ℎ𝑝𝑝 𝑐𝑐𝑝𝑝𝐴𝐴𝑝𝑝𝑝𝑝𝑑𝑑 𝑏𝑏𝑏𝑏 𝐶𝐶𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶−19
# 𝐼𝐼𝑝𝑝𝑐𝑐𝑝𝑝𝑐𝑐𝑡𝑡𝑝𝑝𝑐𝑐𝑝𝑝𝑝𝑝

∗ 𝛥𝛥𝐼𝐼     (1.13) 

where the hospitalization rate is the total number of adult patients confirmed and suspected of 

having COVID-19 compared to the total number of infections for a certain state during the 
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second peak (U.S. Department of Health and Human Services, 2023). The mortality rate is 

calculated as the number of deaths compared to the total number of infections during the second 

peak; the number of predicted infections is multiplied by both of these rates to determine the 

number of hospitalizations, ΔH, and the number of deaths, ΔD that may have been prevented 

throughout the second peak of infections.  
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4.0 RESULTS 

The findings from the research completed during this study include the final SIR model 

infection curves that represent the observed infection cases and the adjusted infection cases, 

which are predicted based on traffic patterns throughout the pandemic for each U.S. state. The 

resulting reduction in infections, hospitalizations, and deaths that could be a result of these 

modified infection curves are analyzed on an individual state basis. 

The 2020 daily traffic compared to same-day 2019 daily traffic, along with the daily 

recorded infection numbers, in the ten states in the U.S. are shown in Figure 2 through Figure 11. 

Figure 2 shows the southeast state (Florida), Figure 3 through Figure 6 show the northeast states 

(New York, Massachusetts, New Hampshire, and Vermont, respectively). Figure 7 through 

Figure 10 show the midwestern states (Illinois, Indiana, Ohio, and Michigan, respectively). 

Figure 11 shows the northwest state (Montana). Each of the U.S. states identified in this study 

were analyzed separately due to regional changes in traffic volumes and infection rates; 

hospitalization and death rates also vary depending on the geographic region and the population 

characteristics of each. Population density, for example, may have an effect on the contact and 

transmission rate of viruses within a population. A higher population density may result in a 

higher transmission rate as individuals are closer physically and the chances of interaction are 

higher than an area with a lower population density.  
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Figure 2: Seven-day rolling average COVID-19 cases and difference between same-day traffic 
volume in study period and 2019, including first and second peak, in Florida. 

 

 
Figure 3: Seven-day rolling average COVID-19 cases and difference between same-day traffic 
volume in study period and 2019, including first and second peak, in New York. 
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Figure 4: Seven-day rolling average COVID-19 cases and difference between same-day traffic 
volume in study period and 2019, including first and second peak, in Massachusetts. 

 

 

Figure 5: Seven-day rolling average COVID-19 cases and difference between same-day traffic 
volume in study period and 2019, including first and second peak, in New Hampshire. 
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Figure 6: Seven-day rolling average COVID-19 cases and difference between same-day traffic 
volume in study period and 2019, including first and second peak, in Vermont. 

 

 

Figure 7: Seven-day rolling average COVID-19 cases and difference between same-day traffic 
volume in study period and 2019, including first and second peak, in Illinois. 
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Figure 8: Seven-day rolling average COVID-19 cases and difference between same-day traffic 
volume in study period and 2019, including first and second peak, in Indiana. 

 

 

Figure 9: Seven-day rolling average COVID-19 cases and difference between same-day traffic 
volume in study period and 2019, including first and second peak, in Michigan. 
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Figure 10: Seven-day rolling average COVID-19 cases and difference between same-day 
traffic volume in study period and 2019, including first and second peak, in Ohio. 

 

 

Figure 11: Seven-day rolling average COVID-19 cases and difference between same-day 
traffic volume in study period and 2019, including first and second peak, in Montana. 

 

COVID-19 infection data for all of 2020 and the beginning half of 2021 was plotted as a 

time series, along with the change in traffic volume for same day equivalents from 2019 to 2020. 

From the time series plots shown in the figures below, change in traffic volumes during the first 
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peak of cases (highlighted by the blue region) is much higher than when cases peak for the 

second time (highlighted by the red region) in late 2020 and early 2021, as traffic volumes 

creeped back towards pre-pandemic levels. Every state experienced higher traffic volumes 

during the second peak compared to the first peak. The percent change of traffic from the base 

year of 2019 to the study year 2020 is shown in Table 4. All states had a negative change in 

traffic volumes from 2019 to 2020. Michigan had the largest change in traffic volumes (56.1 

percent) while Indiana had the lowest change in traffic volumes (28.1 percent). To model 

infection curves for the data collected, the parameters for the SIR model are needed to make 

predictions on the data. The dates that correspond to the second peak of cases from the time 

series plot were used as the range for the Nelder-Mead Estimation for the observed case data. 

The parameter estimation curves for New York, Florida, Massachusetts, New Hampshire, 

Illinois, Indiana, Vermont, Ohio, Michigan, and Montana can be seen in Figures 12 through 21. 

These are the plots that are produced by the least squares likelihood analysis using Nelder-Mead 

Estimation, using the population and case data from each state. The black data points are the 

daily observed COVID-19 infection data, and the blue curve is the output from the predicted 

model based on the estimation technique. The corresponding beta and gamma parameters from 

the estimation can be found in the Table 4. These parameters were then used in conjuncture with 

the population of each respective state in the traditional SIR model equations to achieve an 

infection curve that represents the initial, or observed, conditions.  
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Table 4: Estimated SIR model parameters based on observed data for second peak date period. 

State Beta 
variable 

Gamma 
variable 

Reproducti
on Number, 

Ro 

% Traffic 
Reduction 
First Peak 

% Traffic 
Reduction 

Second Peak 

Date Period 
First Peak 

Date Period 
Second Peak 

MAE 

New York .929 .897 1.036 -53.2 -20.1 3/21/20 – 
5/19/20 

10/3/20 – 6/3/21 1506 

Florida 2.253 2.183 1.032 -44.9 -14.0 3/23/20 – 
4/29/20 

5/27/20 - 8/30/20 552 

Massachusetts 1.187 1.142 1.039 -41.9 -24.0 3/19/20 – 
6/16/20 

10/17/20 - 
2/25/21 

287 

New 
Hampshire 

1.39 1.345 1.033 -34 -14.1 4/1/20 – 6/18/20 9/23/20 - 3/5/21 51 

Illinois 1.032 .995 1.037 -29.4 -9.8 3/19/20 – 
6/28/20 

9/22/20 - 2/8/21 1086 

Indiana 1.045 1.003 1.042 -28.1 -11.0 3/26/20 – 
6/28/20 

9/26/20 - 3/5/21 366 

Ohio 1.104 1.063 1.039 -41 -14.3 3/16/20 – 
5/23/20 

9/24/20 - 3/5/21 634 

Vermont 1.794 1.757 1.021 -46.7 -16.5 3/14/20 – 
4/20/20 

10/11/20 - 3/1/21 16 

Michigan 1.536 1.483 1.036 -56.1 -16.2 3/19/20 – 
4/29/20 

10/6/20 - 1/24/21 662 

Montana .978 .938 1.043 -28.5 -2.9 3/15/20 – 5/9/20 9/5/20 - 1/24/21 83 
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Figure 12:  Observed COVID-19 cases and the fit infected curve based on Nelder-Mead 
Estimation for New York. 

 

Figure 13:  Observed COVID-19 cases and the fit infected curve based on Nelder-Mead 
Estimation for Florida. 
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Figure 14:  Observed COVID-19 cases and the fit infected curve based on Nelder-Mead 
Estimation for Massachusetts. 

 

Figure 15:  Observed COVID-19 cases and the fit infected curve based on Nelder-Mead 
Estimation for New Hampshire. 
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Figure 16:  Observed COVID-19 cases and the fit infected curve based on Nelder-Mead 
Estimation for Illinois. 

 

Figure 17:  Observed COVID-19 cases and the fit infected curve based on Nelder-Mead 
Estimation for Indiana. 
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Figure 18:  Observed COVID-19 cases and the fit infected curve based on Nelder-Mead 
Estimation for Ohio. 

 

Figure 19:  Observed COVID-19 cases and the fit infected curve based on Nelder-Mead 
Estimation for Vermont. 
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Figure 20:  Observed COVID-19 cases and the fit infected curve based on Nelder-Mead 
Estimation for Michigan. 

 

Figure 21:  Observed COVID-19 cases and the fit infected curve based on Nelder-Mead 
Estimation for Montana. 
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The parameters determined through the Nelder-Mead Estimations were then used as 

the baseline observed values for the second peak of COVID-19 infections that occurred in 

late 2020 and early into 2021. The red curves in the 2nd Peak Infected Cases Observed and 

The adjusted plots shown in Figures 22 through 31 represent this data, which applies the 

model simulation curve parameters to the classic SIR equations. In order to determine the 

effect consistent government restrictions, including stay-at-home orders, might have had on 

COVID-19 infections during this second (bigger) peak, conditions and behavior from the 

initial peak are then applied to the aforementioned peak. Transportation user behavior was 

much different between the two time periods studied, as evidence by the change in traffic 

volumes compared to the same-day equivalent in 2019. During the early months, there were 

fewer users on the roadways, which is a result of state and federal governmental restrictions 

being more strict at this stage, as well as business incentivizing work-at-home practices. As 

the months progressed after this first peak, users became more comfortable and restrictions 

began to lift. This is evidenced by the immediate decrease in change in traffic volumes 

during this time period. The prediction model found in this study is concerned with the effect 

that governmental restrictions, that proved to be successful in reducing the number of trips 

taken throughout households during the initial surge of cases in the U.S., might have on 

traffic volumes during the second peak, and ultimately the ensuing effect on the second 

substantial peak of infections. The predicted infections depict a situation where, when 

conditions in each state predicted a surge of cases, state governments could enact a set of 

restrictions on household trips taken, reducing the total volume of vehicles within the system, 
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and flattening the resulting infection curve, which can ultimately reduce the load on health 

care services throughout the country.  

The first step of the analysis of the second peak was to simulate traffic conditions as 

they were in the first peak. A linear regression analysis was completed for all of the U.S. 

states studied, determining the relationship between the change in daily traffic volumes from 

2019 to 2020/2021 and the number of daily infections, taken from a five-day lag period from 

the traffic volume data (Kristiansson, 2021). The values from the analysis can be seen in 

Table 3, denoted by the variable n. States with a larger n value resulted in a higher reduction 

in infections during the second peak, meaning that traffic volumes were more of a factor in 

infection cases. Massachusetts had the highest n value, while Ohio and New Hampshire 

recorded the lowest n value for the ten states studied. There are many factors that can 

contribute to the number of infections during a pandemic within a specific population, this 

study identified only the effect that traffic volumes may have played.  
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Figure 22: Second peak observed and adjusted infected curves based on traffic patterns 
from first peak for New York. 

 

 

Figure 23: Second peak observed and adjusted infected curves based on traffic patterns 
from first peak for Florida. 
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Figure 24: Second peak observed and adjusted infected curves based on traffic patterns 
from first peak for Massachusetts. 

 

Figure 25: Second peak observed and adjusted infected curves based on traffic patterns 
from first peak for New Hampshire. 



 

Modeling Future Outbreaks of COVID-19 Using Traffic as Leading Indicator                          52 
 

 

 

Figure 26: Second peak observed and adjusted infected curves based on traffic patterns 
from first peak for Illinois. 

 

Figure 27: Second peak observed and adjusted infected curves based on traffic patterns 
from first peak for Indiana. 
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Figure 28: Second peak observed and adjusted infected curves based on traffic patterns 
from first peak for Ohio. 

 

Figure 29: Second peak observed and adjusted infected curves based on traffic patterns 
from first peak for Vermont. 
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Figure 30: Second peak observed and adjusted infected curves based on traffic patterns 
from first peak for Michigan. 

 

Figure 31: Second peak observed and adjusted infected curves based on traffic patterns 
from first peak for Montana. 
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The SIR model equation parameters calculated for the observed infection curve, as 

well as the final adjusted infection curve parameters, can be found in Table 5. The final 

observed infection curves were plotted along with the reduced infection curves to show the 

comparison between the two. The total number of COVID-19 infections which may have 

been reduced, calculated as the difference in the integral of infection curves between the 

observed (red curve) and predicted equations (blue curve), can be seen in Table 6. Based on 

the SIR curve models created, the contact rate values to be used in the modified SIR 

equations were identified for each of the ten U.S. states. This contact rate, which is based on 

the reduction in traffic during the second peak, 𝛽𝛽2, represents the amount by which traffic 

conditions within the date period encompassing the first peak affect the reduction of 

infections in the predicted SIR infected curve models. The results of the calculated contact 

rate values for each of the states identified can be seen in Table 5. 

A single trip taken by an infected individual in a densely populated area would most 

likely result in more contact of individuals compared to the same single trip by the infected 

individual in a sparsely populated area. This relationship between population density and the 

n factor depicts why more densely populated states have a higher n value. Massachusetts, the 

state with the highest n factor of the states identified, is also the most densely populated state, 

with a density of 884 people per square mile. Alternatively, Montana has the lowest 

population density, seven people per square mile, and has the second lowest n factor of the 

states studied. For all ten U.S. states, a total of 7,112 deaths may have been prevented 

throughout the second peak, with a further 273,062 hospitalizations not being required if the 
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governmental restrictions and behavior from the first peak lasted throughout 2020 and into 

early 2021. A total of 407,800 COVID-19 infection cases may have been prevented in these 

ten U.S. states within the time period that the second peak of infections occurred for each 

state. Figure 32 illustrates the linear regression plot between the predicted number of deaths 

reduced from the observed data and population density for each U.S. state. 

 

Table 5: SIR model parameters for observed and adjusted equations for second peak date 
periods.  

State 𝛃𝛃 𝛃𝛃𝟐𝟐 γ N 
(millions) 

Pop 
Density 
(p/mi^2) 

Traffic 
Reduction 

New York .929 .9257 .897 19 413 -.201 

Florida 2.253 2.249 2.183 21 401 -.140 

Massachusetts 1.187 1.1804 1.142 7 884 -.240 

New Hampshire 1.39 1.389 1.345 1.5 152 -.141 

Illinois 1.032 1.0307 .995 12.5 228 -.098 

Indiana 1.045 1.0443 1.003 7 188 -.110 

Ohio 1.104 1.1034 1.063 12 286 -.143 

Vermont 1.794 1.787 1.757 .65 68 -.165 

Michigan 1.536 1.527 1.483 10 177 -.162 

Montana .978 .9774 .938 1 7 -.029 
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Table 6: Effect of reduction in travel on health service infrastructure based on predicted 
infection curves for U.S. states. 

State Reduced 
Infections 

% 
Change in 
Infections 

Hospitalization 
Rate 

Reduced 
Hospitalizations 

Death 
Rate 

Infected 

Reduced 
Deaths 

New York 159,000 11.1 84.9 134,991 2.07 3,292 

Florida 38,000 6.86 65.2 24,776 1.60 608 

Massachusetts 75,300 17.2 40.4 30,422 1.69 1,273 

New Hampshire 1,400 2.75 40.8 572 1.42 20 

Illinois 31,800 3.70 59.5 18,921 1.41 449 

Indiana 8,000 1.66 59.8 4,784 1.60 128 

Ohio 11,000 1.58 62.5 6,875 1.60 176 

Vermont 3,100 26.6 31.0 961 1.42 43 

Michigan 79,000 18.2 64.3 50,797 1.40 1,106 

Montana 1,200 1.67 49.4 593 1.41 17 

Total 407,800   273,062  7,112 
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Figure 32: Linear regression plot between the predicted number of deaths reduced from 
the observed data and population density for each U.S. state 

 

The death rate for infected individuals is the highest for New York and 

Massachusetts, most likely due to the geographic location of these states, being further north 

and the weather being cold during the second peak of cases could have contributed to higher 

death rates than states with milder climates. These states also have the highest population 

densities, relative to the rest of the states identified, which could contribute to higher deaths 

among those infected. The hospitalization rate of New York was observed as being the 

highest among the ten states. Vermont is the state that has the highest percent change (26.6 

percent) in infections in the predicted model compared to the observed data. This result 

conveys that implementing stay-at-home mandates over the first 12 months of the pandemic 

may have been the most effective in Vermont. Even though New York had the largest 
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number of infections, hospitalizations, and deaths reduced, the largest percentage of the 

population that observes an effect of these changes is Vermont, with Michigan having the 

next largest percentage change in infections (18.2 percent).  
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5.0 CONCLUSION 

The COVID-19 pandemic that swept across the world in 2020 and throughout 2021 

had societal, environmental, and economic impacts that affected every country. The research 

conducted identified how the epidemic had an effect on the U.S. population, specifically 

within ten states – Florida, New York, Massachusetts, New Hampshire, Illinois, Indiana, 

Vermont, Ohio, Michigan, and Montana. The effects of the virus had various impacts on 

differing populations, dependent on a number of factors. The factors studied in this research 

topic included the effect that traffic volumes had on COVID-19 infections and the resulting 

hospitalizations and deaths that may have been prevented. The number of infections during 

the epidemic, led to a high number of hospitalizations, which induced a strain on health care 

facilities throughout the U.S. The hospitalization and death rates for the specific states during 

the second peak were determined and utilized to calculate the number of hospitalizations and 

deaths that could have been avoided if the initial lockdown environment was prolonged 

throughout the dates in which the second peak of infections occurred. Two separate peaks 

were analyzed throughout the study, the initial “first” peak, which generally occurred from 

March to June 2020, and the “second” peak, which took place in the winter of 2020 and early 

2021. Traffic conditions during the first peak, that were a result of governmental mandates 

and stay-at-home orders, were simulated for the dates of the second peak and the resulting 

reduction of COVID-19 infections was calculated for each of the U.S. states. The extent to 

which the observed infection curves were flattened by reducing the number of vehicular 
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traffic can be utilized by various national and state governments to control the spread of 

infections during future epidemics. 

In general, the results of the research showed that a reduction in traffic during the 

second peak of infections flattened the resulting infection curve for the same time period. 

The total number of infections that may have been reduced by maintaining governmental 

procedures from the initial outbreak of COVID-19 cases in the ten U.S. states was 407,800 

cases. As a result of these 407,800 cases, 273,062 individuals may have been removed from 

hospitals, reducing the overall load on health care facilities. There also may have been 7,112 

fewer deaths in the second peak alone, given the traffic conditions of the first peak of 

infections. A specific example of the general results of the research is illustrated by the state 

of Massachusetts. To achieve an equivalent percent change in traffic from 2019 to 2020, a 

reduction of 24 percent in traffic in the second peak volumes was calculated. The resulting 

number of vehicles reduced from the second peak time period is used to calculate the number 

of infections that are reduced from the second peak, 75,300 in the case of Massachusetts. 

From this value, the corresponding number of hospitalizations (30,422) and number of deaths 

(1,273) that are potentially reduced for the second peak time period are calculated by using 

the hospitalization and mortality rates, respectively. This method of reducing traffic volumes 

is effective at flattening the curve of infections within a population, as evidenced by the SIR 

infection curves for the predicted versus the observed models. Each of the predicted infection 

curves results in a lower peak and total number of infections than the original infection 

curves, which are based on the observed COVID-19 data.  
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All of the states identified in the study had predicted infection curves that were below 

the observed infection curves, meaning that there is a direct relationship between the number 

of trips taken and the infection rate. This trend is visualized in Figure 33, as the percent 

reduction in traffic between 2019 and 2020 increases, the higher the percent of infections 

reduced in the predicted model compared to the observed model. This relationship indicates 

that traffic volumes may serve as a leading indicator of infections, and ultimately 

hospitalizations and deaths, within a population. The state with the highest reduction in 

traffic during the first peak period, Michigan, resulted in having one of the highest percent 

reductions in infections, an 18.2 percent reduction of infections in the predicted model 

compared to the observed infection data. As more people leave their households and interact 

with others in public spaces, the exposure rate increases, leading to more cases. On the 

contrary, fewer total vehicle volume counts might result in fewer overall infections for a state 

or country. The rate at which this relationship develops is due to a multitude of external 

factors as the dynamic of a pandemic within a society is complex and interconnected. The 

results from the predicted model created depict a correlation between traffic volumes and 

infections in which traffic volumes can be an indicator of the amount of interaction between 

individuals and help to predict future infection counts.  
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Figure 33: Percent change in traffic during first peak analyzed against the number of 
deaths reduced from observed and predicted infection models for each state. 

 

The overall reduction of peak infections in the second peak, quantified by the percent 

change in infections, as seen in Table 6, are impacted by a countless number of factors. The 

relationship between the number of cases and traffic volumes may be determined as being 

linear, however, it is far from being a direct and independent relationship. Epidemics within a 

population are a complex and dynamic interaction that relies on a number of factors. Some of 

these factors that directly relate to traffic could include the amount of public transit utilized, 

the type of trips being taken within a population, and the behavior of the population during 

the first peak. A higher number of public transit users might result in more infections as there 

exists more people in close contact with one another, increasing the contact rate of this 
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specific population, as opposed to individuals travelling alone in passenger cars. Recreational 

trips could result in a higher contact rate, due to longer contact time between individuals, 

than essential trips in which the person is wearing a mask and practicing proper social 

distancing. The results of the potential reduction of cases in the second peak for this study 

rely on the behavior of individuals during the first peak; therefore, any changes in behavior 

amongst individuals in a certain area have a direct impact on results for the reduction of 

infections. 

A surge in hospitalizations during the peak of infections can have a compounding 

effect on the demand for medical resources and ultimately lead to an increase in the death 

rate of those infected with the COVID-19 virus. Nearly one in four COVID-19 deaths could 

be attributed to hospitals strained by surging caseload (Sameer et al., 2021). The surge-

mortality relationship was stronger as the pandemic waned on in the summer of 2020, June to 

August, than it was in the spring, March to May, of 2020. The mortality rate that was 

calculated for each state studied is dependent on the time period and healthcare infrastructure 

capacity of the specific region of infections. Any change in the virus itself can also have an 

impact on the transmission and mortality rates. The primary variants of the COVID-19 virus 

during the study period were the Alpha, Beta, Gamma, and Delta variants. A study conducted 

on these four variants from June 2020 to October 2021 concluded that the mortality rates 

were 2.16, 2.23, 1.50, and 2.08, respectively (Lin 2021). Advances in the virus protection 

throughout the study period can also have an effect on the contact rate of the virus. The 

SARS-CoV-2 vaccine was rolled out in the United States in the beginning of 2021 for 
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essential healthcare workers, and quickly became eligible for all age groups by the summer 

of 2021. The dynamic of social interaction and spread of the virus was altered once a large 

proportion of the population were able to be vaccinated against the early variants of the virus. 

Once the vaccine became readily available, individuals might have resorted to pre-pandemic 

behaviors, including taking more vehicular trips in the second peak.  

Additional limitations of the research conducted relate to the generalization of traffic 

and infection trends within each state. The relationship between traffic volumes and infection 

numbers involves data that is compiled at a state level and is only geographically defined by 

the state in which the values are recorded. Continuous count stations, from which the traffic 

volumes were collected, include both rural and urban count stations. The contact rate for 

COVID-19 might differ in each of these regions, with higher densities in urban populations, 

the contact rate may be higher than the contact rate in a rural population. Geographically 

specific COVID-19 infection data could allow corresponding traffic detectors to be used to 

determine the relationship between traffic volumes and infections on a more local level, 

which could be scaled up to represent the entire population of the state. Homogeneous 

mixing can lead to an overestimation of the epidemic size and the magnitude of intervention 

needed to control the outbreak (Stroud, 2006).  

Another limitation of this research is that only a fraction of the U.S. states were 

represented in this study. Due to the lack of available traffic volume data, the number of 

states that could be studied was limited. While a range of geographic regions were 
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represented by the states studied, a larger variety of states might be able to provide richer 

results that could be applied to the remaining U.S. states.  

The infection data compiled for this research is based on reported values, which may 

be underestimated, compared to the actual number of COVID-19 infections around the U.S. 

An underestimation of infections could also be contributed to the availability of tests during 

the first peak of infections, compared to the second peak where tests were more readily 

available for individuals and more accurate at detecting the virus. The reporting of infection 

numbers occurs when an individual tests positive for the Coronavirus; therefore, the majority 

of reports come from hospitals and healthcare facilities. Hospitalization rates that were 

calculated for the predicted infection values may be skewed higher than the actual values, as 

reported cases are determined at hospitals, which contribute also to the number of patients 

that are admitted due to COVID-19.  

The SIR model is very general and can apply to a multitude of pandemics. COVID-

19, and every new virus that becomes a pandemic, has certain characteristics that 

differentiate itself from other viruses. The model used throughout this study was not 

specifically tailored towards the COVID-19 virus but instead towards a general virus that 

causes a pandemic. There are an unconceivable number of factors that result in the 

transmission of a virus within a pandemic and the SIR model seeks to simplify these factors 

into a few parameters.  

Implementing governmental mandates and directives that reduce the total number of 

vehicles on the roadways within a population may decrease the total number of infections 
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that are likely to occur; however, there are additional environmental benefits that result from 

the reduction of motor vehicle trips. A study conducted by El-Sayed looking at the impact of 

the COVID-19 pandemic on the air quality in Florida found that a number of air pollutants 

were reduced during the time period of the lockdown in Florida. Reduction in nitrogen 

dioxide and carbon monoxide, two of the six EPA criteria pollutants, were observed 

throughout the state in most major cities, as a result of a reduction of motor vehicles during 

this time period. Likewise, concentrations of ozone were also measured to be reduced, as a 

result of the nitrogen oxide concentrations in the atmosphere being reduced. (El-Sayed 2021). 

An additional benefit of reducing the total volume of cars on the roadway would be that there 

is a reduction of criteria pollutants in the atmosphere, which has the potential to improve air 

quality and make for a healthier environment for the corresponding population.  

Traffic volume data for the remaining forty U.S. states can be compiled, along with 

the infection counts, and the prediction models can be created for every U.S. state. A larger 

database of traffic volumes and infections can provide more refined results and infection 

predictions that can be used on a federal or state level to provide guidance during future 

epidemics. The results from this study can be used in comparison with an analysis of more 

localized traffic and infection data to determine changes in flattening of the infection curve 

based on geographic region. Data on a county or city level can be used to predict infections 

within a certain area and governmental directives can be imposed on potential hotspots for 

infections. Location-based service, or LBS, can be utilized to determine common areas of 

grouping and the exposure time between individuals in a certain area, which can be used as 
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input for the transmission rate and development of infection curve models and ultimately 

infection control. 

The findings from this study can be utilized by government officials and communities 

that are concerned with the mitigation of disease and infection rates within a specific area. 

Implementing stay-at-home mandates, or even work-at-home incentives for certain 

employees, can reduce the total traffic volume within a population.  
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