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EXECUTIVE SUMMARY 

Express lanes offer reliable travel times for a toll, but equity and fairness issues have 

prompted arguments for discounts rather than mandatory tolls. Recent studies, like the I-405 

analysis, show that low-income travelers use express lanes when needed. However, guidance 

on designing equitable discounts considering multiple criteria such revenue, total system 

travel time, and equity is lacking. Lately, deep reinforcement learning (Deep-RL) algorithms 

have been used to learn the traffic control strategies in the areas of express lane pricing, 

signal control, and the control of CAVs in mixed autonomy conditions; however, the 

potential of such algorithms for equity is less explored. The PI's past study on "Equitable 

Dynamic Pricing for Express Lanes" addressed the gap by providing guidance for differential 

tolls and analyzing unintended traffic patterns. However, the framework was limited for 

single-objective optimization of equity.  

 

This report conducts a multiobjective analysis in designing tolls and discounts for equitable 

benefits. In particular, the report analyzes and implements the latest Deep-RL methods 

including soft-actor-critic (SAC) and proximal policy optimization (PPO) towards objectives 

such as minimizing total system travel time (TSTT), maximizing equity metrics (or 

minimizing inequality measures), maximizing revenue, and increasing the corridor 

throughput. Our analysis reveals several key findings. For minimizing TSTT, most Deep-RL 

algorithms performed similarly with the SAC generally outperforming PPO across various 

objectives in finding toll policies with higher revenues. Revenue was generally higher when 

no discounts were offered, and the equity gap increased as travelers with lower value of time 

(VOT) were worse off. When discounts were allowed, the SAC algorithm provided uniform 

TSTT across VOTs, resulting in an equitable performance. Enforcing discounts reduced 

revenue, with 25% discounts maintaining a better balance of travelers between toll and non-

toll lanes compared to 50% discounts, which encourage too many travelers to use the toll 

lanes, thereby violating the minimum speed limit constraint. The price of fairness, calculated 

as the revenue sacrificed to achieve the most equitable tolling, was found to be 91.4%. 
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The findings from the study suggest that while maximizing revenue and efficiency in 

managed lanes is a priority for investors, ensuring equitable access is crucial, and 

implementing personalized tolling can maintain high revenue while reducing travel times for 

low-income travelers.  While the price of fairness was higher in our experimental studies, we 

recommend agencies conduct sensitivity analyses for “price of fairness” under different 

discount levels for effective weighing of equity relative to other priorities of the agency. As a 

limitation of the mesoscopic simulation-based analysis, the study findings can be improved 

through inclusion of departure time choice decisions and modeling the complexities of lane 

change behavior using microsimulation. 
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BACKGROUND 

Price managed lanes provide reliable travel times in exchange for a toll and are increasingly 

being considered across the United States as a means for addressing congestion in a supply-

constrained urban infrastructure. With the widespread adoption of managed lanes, equity 

concerns emerge as it relates to the needs of all travelers. Equity in transportation refers to a 

fair distribution of costs and benefits associated with a public project (like transportation 

infrastructure) across all groups and communities, especially such that some groups are not 

(AbuLibdeh, 2017).  

 

Potential equity concerns emerge from express lanes where economically disadvantaged 

travelers are left worse off due to express lanes. A few analyses have emerged in this space 

over the last few years such as Hall (2018), Tan and Gao (2018), Twaddell and Zgoda 

(2020), Debreczeni (2021), and Xie et al. (2024). However, there is a lack of studies on the 

design of equitable discounts for low-income travelers, creating barriers to equitable 

transportation systems. The past study on "Equitable Dynamic Pricing for Express Lanes" 

(report #CATM-2022-R9-NCAT) addressed some of these gaps by providing guidance for 

differential tolls and analyzing unintended traffic patterns. However, the framework was 

limited for single-objective optimization of equity. Furthermore, limitations on open-source 

algorithms for equity optimization hinder accessibility for researchers and practitioners. 

 

The goal of this implementation-focused research is to develop a multiobjective 

reinforcement-learning-based optimization of express lane discounts and create an open-

source tool for making previous research findings more accessible. Such multiobjective 

considerations are critical for managed lanes and transportation systems as a whole where 

agencies are required to consider various goals and objectives for meeting the needs of users 

and stakeholders. For example, transportation agencies desire traffic control policies that 

result in best congestion mitigation, without compromising the throughput, safety, and 

reliability, while generating sufficient revenue and/or benefit to cost ratio for the expected 

investments. Furthermore, the increasing emphasis on equitable access to transportation 

systems (Gordon, 2021), and designing resilient infrastructure systems have necessitated 
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careful consideration of the impacts of traffic controls across various metrics and key 

performance indicators (KPI), which may sometimes conflict with each other (for example, 

enhancing efficiency on a corridor might warrant compromising the equitable access for all 

travel groups). 

 

Lately, deep reinforcement learning (Deep-RL) algorithms have been used to learn the traffic 

control strategies in the areas of signal control and the control of CAVs in mixed autonomy 

conditions (Peng et al., 2021). While Deep-RL algorithms can be extended for other traffic 

control applications (Wei et al., 2021), the interpretability of the model and optimization of 

multiple objectives (such as increasing revenue while enforcing equitable tolls) together 

remain challenging and have been left unaddressed. 

 

In this research project, three stated research gaps are addressed: (a) multiobjectivity in toll 

design addresses the tradeoffs between objectives like maximizing revenue and improving 

fairness, (b) the use of reinforcement learning methods in traffic management further 

addresses the knowledge gap in implementation of Artificial Intelligence methods for 

congestion pricing, and (c) creating a framework for an open-source tool addresses the gap of 

designing open-source algorithms for equity optimization to promote accessibility for 

researchers and practitioners. 

 

DESCRIPTION OF PROBLEM 

This section outlines the multiobjective reinforcement learning problem being studied in this 

report. Figure 1 shows the different components involved as part of the toll optimization 

problem. Each component represents a key aspect of the transportation system and 

contributes to the formulation of a comprehensive model: 

1. Traveler Choice Models: These models simulate the decisions travelers make, such as 

which lane to use, which route to take, and when to depart. Lane choice can be 

influenced by factors such as the perceived value of time (VOT), which is often 

modeled using a value distribution or a binary logit model that predicts the 
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probability of a traveler choosing a particular lane based on the associated cost and 

time savings. 

2. Traffic Flow Model: This is the heart of the traffic simulation, capturing the 

movement and interaction of vehicles within the lanes, the effects of changes in lane 

speeds, and the phenomena of queue spillback, where congestion in one area spills 

over and affects upstream traffic. This model can be microscopic, focusing on 

individual vehicles and their interactions, or mesoscopic, dealing with aggregate 

flows of traffic. 

3. Demand Model: This component predicts the demand for lane use, which can be 

modeled as either deterministic, with a fixed number of vehicles expected to use the 

lanes, or stochastic, with variability in usage based on different factors. The demand 

can be measured in real-time or estimated based on historical data to understand 

typical traffic patterns. 

4. Toll Pricing Model (Reinforcement Learning Framework): A Deep-RL framework is 

used to optimize toll pricing. The objective is to minimize the total system travel time 

(TSTT), maximize revenue, or achieve other specified goals. Constraints such as the 

minimum and maximum toll rates and minimum speed limits on express lanes ensure 

that the model's solutions are practical and adhere to policy requirements. The RL 

framework would learn from the traffic and demand data, adjusting tolls in response 

to the dynamics of traveler choices and traffic flow to meet its objectives. 

 

 
Figure 1 Component models for express lanes 
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Next, we discuss the multiobjective nature of the problem. Even from an algorithmic point of 

view many approaches have been proposed for handling multiple objectives in pricing. The 

study of optimizing toll charges for express lanes encompasses a diverse array of 

methodologies, including dynamic programming (Wang et al., 2012), model predictive 

control (Tan and Gao, 2018), optimization grounded in dynamic traffic assignment (Zhang et 

al., 2018), feedback integral control, analytical calculations based on a single-bottleneck 

model (Hall, 2018), and deep-reinforcement learning (Pandey et al., 2020). A comprehensive 

review of these models, as presented by Lombardi et al. (2021), emphasizes the intricate and 

variable nature of tolling operations. Despite these advancements, there remains a notable 

gap in the research concerning the equitable distribution of benefits from these tolling 

designs. 

 

Hall's 2018 study delved into the practical implications of achieving a Pareto improvement 

by assessing the distributional and overall impacts of congestion pricing. This investigation 

revealed the feasibility of attaining Pareto efficiency through the implementation of tolls on 

select lanes, even prior to reallocating the generated revenue for public welfare. This scenario 

predominantly favors individuals with a higher value of time and greater flexibility. While 

these economic evaluations offer valuable insights, the applicability of these findings to 

networks with multiple access points and varying tolling objectives remains ambiguous. 

 

Building on the gaps in the literature, the key research questions addressed in this report 

are: 

● How can we integrate multiobjective optimization techniques (Hayes et al., 2022) 

within reinforcement learning for traffic operations (building off latest RL 

algorithms)? 

● How can we interpret the findings from such techniques and validate the 

performance of the open-source code on different test networks? 

● How can we incorporate equity in the tolling designs? 
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LITERATURE REVIEW 

Overview of Reinforcement Learning 

Reinforcement Learning (RL) is a category of machine learning algorithm where an agent 

learns to make decisions through trial and error. This learning process involves interacting 

with an environment and adapting based on feedback, similar to the way humans learn from 

their experiences (Sutton and Barto, 2018). RL is distinguished from other types of machine 

learning by its focus on learning from interaction and its use of feedback over time, rather 

than direct instruction. It is often used in scenarios where the right decisions or actions are 

not known in advance, or the environment is too complex to model explicitly. 

In RL, several key components interact to facilitate the learning process. The agent, central to 

RL, makes decisions and learns from the outcomes within an environment encompassing 

everything the agent interacts with. The state represents the current situation in the 

environment, informing the agent's decision-making process. Actions are the choices 

available to the agent that can change the state, and each action leads to a reward, a feedback 

mechanism indicating the success or failure of the action, which is usually numeric. The 

policy, a strategy defining the agent's behavior, dictates the actions based on the current state. 

The value function helps the agent assess the potential of different states and actions based 

on expected cumulative rewards. These components work synchronously to enable the agent 

to adapt and optimize its behavior in dynamic settings. 

An RL agent engages with its environment sequentially. Mathematically, at every time step 

𝑡, the agent observes a state 𝑠  from a set of possible states 𝑆 and chooses an action 𝑎  from a 

set of possible actions 𝐴. This choice is guided by a policy 𝜋 𝑎 |𝑠 , which is essentially the 

agent's strategy, defining how it selects actions 𝑎  in response to the state 𝑠   (Li, 2017). 

Following this, the agent receives a numerical reward 𝑟  and moves to the next state 𝑠 . 

This transition is determined by the environment's dynamics, specifically the reward function 

𝑅 𝑠,𝑎  and the probability of transitioning to a new state 𝑃 𝑠 |𝑠 ,𝑎 . We also have an 

action value, 𝑄 𝑠, 𝑎 , which is a numerical estimate of the expected cumulative reward that 
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an agent can expect to receive starting from a given state, 𝑠 and taking an action, 𝑎, following 

a policy, 𝜋. 

 𝑄 𝑠 ,𝑎
∈

𝑃 𝑠 ,𝑎 𝑅 𝑠 , 𝑎 𝛾
∈

𝜋 𝑠 𝑄 𝑠 , 𝑎  (1) 

Eq (1) shows the formula of Bellman’s Equation for Q-learning (Sutton and Barto, 2018) 

where the action value of an agent starting from state, s, taking an action, a, and following a 

policy, π, at time step, t is updated using future rewards (here 0 𝛾 1 is the discounting 

factor that lowers the reliance on future reward values in the current objective). 

There has been a wide scale adoption of RL in applications such as aviation policy (Nikki 

Lijing Kuang, 2019), logistics (Gemmink, 2019), medicine (Hajar, et al., 2023), energy 

management (Karl Mason, 2019), traffic signal control (Chu, et al., 2019), and toll pricing 

(Pandey et al., 2020). It has empowered machines to master playing video games solely from 

visual screen input to outperform champion human players in Go using the AlphaGo 

program, and to accomplish a range of tasks encompassing movement and basic problem-

solving (Francois Belletti, 2017).  

In a recent infrastructure deployment and training, RL was also used to optimize energy 

management for grid-interactive efficient buildings, utilizing the City Learn framework to 

effectively balance energy consumption, cost, and emissions (Vázquez-Canteli et al., 2019). 

The study investigated RL methods in grid-interactive efficient buildings using the 

framework aiming to optimize energy use, cost, emissions, and demand management. First, a 

Rule-Based Controller (RBC) was used to generate sample policies and then Q-learning 

algorithms are used for insights and optimal policy. Initial findings with an RBC revealed 

limitations in Tabular Q-learning (TQL) due to its dependence on a single observation and 

computational demands. The Soft Actor Critic (SAC) algorithm, employing neural networks 

for Q-value approximation, was introduced to address these issues and showed superior 

performance in training efficiency and energy optimization. Challenges in SAC's reward 

function led to the creation of a custom reward function, enhancing SAC's effectiveness. This 
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improved SAC demonstrated better battery and solar energy management, with potential for 

further gains from extended training. 

Reinforcement Learning in Transportation Systems 

 Various reinforcement learning methods have been used and discussed in the 

transportation literature over the past few years. Table 1 summarizes the state, action, reward, 

and policy algorithms used in the literature. We also identify whether multi-objective 

tradeoffs were considered, noting that there are limited studies in this area. 

Table 1 Summary of RL components in the recent literature on infrastructure control and optimization 

Paper State Action Reward Policy 

learning 

Algorithm Multiobjective 

tradeoffs (if any) 

Recent Advances in 

Reinforcement Learning for 

Traffic 

Signal Control: A Survey of 

Models and Evaluation (Wei 

et al., 2021) 

Description of the 

environment (e.g., signal 

phase, waiting time of cars, 

queue 

length of cars, and positions 

of cars, lane-level queue 

length and phase) 

Changing to a 

certain 

phase in the 

single 

intersection 

scenario 

Queue length 

(single 

intersection), 

Pressure(multi

-intersection) 

Model 

free, 

Actor-

critic, 

RNN 

DDPG, 

DQN 

- 

Improving Deep 

Reinforcement Learning-

Based Perimeter Metering 

Control Methods With 

Domain Control Knowledge 

(Zhou and Gayah, 2023). 

Regional congestion levels, 

traffic demands 

Controlling 

the proportion 

of traffic 

passing 

through each 

perimeter 

Cumulative 

trip 

completion in 

a time step 

Model-

free off-

policy 

Actor–

critic 

DDPG - 

EMVLight: A multi-agent 

reinforcement learning 

framework for an 

emergency vehicle 

decentralized routing and 

traffic signal control 

system (Su et al., 2023) 

The number of vehicles on 

each outgoing lanes and 

incoming lanes, the distance 

of the EMV to the 

intersection, the estimated 

time of arrival and the next 

link the EMV will be routed 

to. 

Switching 

phase. 

Weighted sum 

of pressure 

- A2C 

(MA2C) 

- 

Multiadvisor Reinforcement 

Learning for Multiagent 

Multiobjective Smart Home 

Energy Control (Tittaferrante 

and Yassine, 2021) 

Temperature (Indoor, 

outdoor, and set), battery 

charge level and energy 

consumption 

Directing the 

energy to 

different 

appliances. 

Appropriate 

temperature, 

range anxiety, 

consumption 

reduction 

Off policy 

action-

value 

DQN Multiadvisor 

agents in each 

appliances and 

their associated 

reward functions 
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A Multiobjective 

Reinforcement Learning 

Framework for Microgrid 

Energy Management (Liu et. 

al., 2023) 

The temperature, 

wind speed, solar radiation, 

stream flow of the local river 

that 

provides hydropower and the 

real-time location marginal 

price 

of previous day at hour t. 

The decision 

vector that 

determines 

the power 

output of each 

device for the 

next time 

step. 

Optimal 

expected cost, 

expected 

emission, and 

expected heat 

waste 

Model 

free 

Borg 

Multi-

Objective 

Evolutiona

ry 

Algorithm 

A weighted sum 

method to 

convert the 

original multiple 

objective 

formulations into 

a single objective 

representation 

that tacitly infers 

that the specified 

weights capture 

all stakeholders’ 

preferences. 

A Framework for Automated 

Multiobjective Factory Layout 

Planning using 

Reinforcement Learning (Klar 

et al., 2022) 

Permissible and 

impermissible area on the 

grid, the geometry and 

location of functional unit 

placed, load bearing capacity 

for each position. 

Placement of 

the functional 

unit by choice. 

Functional 

units in 

permissible 

area and 

higher for 

better solution 

and optimized 

locations. 

- 

Deep Q-

learning 

- 

A Multiobjective 

Reinforcement Learning 

Approach to Trip Building 

(Dos Santos and Bazzan, 

2022) 

Each intersection in the traffic 

network 

Link to take at 

an 

intersection. 

Time it takes 

to travel and 

its emission. 

Model 

free 

Q-learning 

(Adapted 

Pareto Q-

Learning) 

Accumulation of 

the reward after 

factoring for 

penalty and bonus 

User Preference-Based 

Demand Response for Smart 

Home Energy Management 

Using Multiobjective 

Reinforcement Learning 

(Chen et al., 2021) 

The status of the home 

appliances and battery 

system, current electricity 

price. 

Whether to 

switch the 

appliances on 

or off. 

Electricity cost, 

user comfort. 

- 

Q-

learning. 

Weighted sum 

method of the Q-

tables. 

Reinforcement Learning for 

Solving the Vehicle Routing 

Problem (Nazari et al., 2018) 

The locations and demands of 

the customer nodes. 

Selecting 

which 

customer 

node to visit 

next or 

whether to 

return to the 

depot. 

The negative 

of the total 

distance 

traveled. 
Model 

based, 

MDP 

A3C  

 

 

- 

 

Multiobjective RL 

Multiobjective Reinforcement Learning (MORL) is defined as a specialized branch of 

reinforcement learning that focuses on optimizing multiple, often conflicting objectives 

simultaneously (Hayes et al., 2022). Unlike traditional reinforcement learning, which 

typically aims to maximize a single cumulative reward, MORL deals with a vector of 

rewards, each representing a different objective. This approach is particularly relevant in 

complex environments where decisions must balance trade-offs between competing goals, 
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such as cost, efficiency, safety, or environmental impact. MORL algorithms are designed to 

navigate these trade-offs, seeking policies that provide an optimal compromise among the 

multiple objectives, often leveraging techniques like Pareto efficiency to identify solutions 

that cannot be improved on one objective without degrading another. 

 

Advances in Personalized Tolling 

Recent advancements in transportation management and consumer behavior research have 

highlighted innovative approaches to toll pricing and demand management, as well as the 

implications of big data in consumer pricing strategies. A study by Zhang (2019) presents a 

proactive toll pricing framework using a Dynamic Traffic Assignment (DTA) system, which 

dynamically optimizes toll rates based on real-time traffic predictions. This system, enhanced 

through online calibration for accurate traffic predictions, has shown superior performance in 

managing traffic compared to static and reactive models. Building upon this, Zhang extends 

the framework to incorporate a personalized toll pricing system, utilizing electronic toll 

collection and vehicle identification data to develop individualized route choice models. This 

personalized approach, offering targeted discounts based on traveler preferences, effectively 

improves revenue optimization over non-personalized systems. 

Parallel to these developments, Azevedo et al. (2018) explores incentive-based demand 

management strategies in transportation. These strategies, including dynamic pricing and 

quantity control, are becoming increasingly accepted as alternatives to traditional methods 

like congestion charging. The study emphasizes the importance of personalizing incentives, 

such as cash rewards or High Occupancy Vehicle (HOV) passes, to impact commuting 

decisions and optimize travel demand management systems. Azevedo et al. (2018) also 

highlights the necessity of integrating predictive models and real-time behavioral adjustments 

into transportation management systems for efficiency, potentially leading to significant 

energy savings and reduced congestion. 
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Big Data's Role in Consumer Pricing and Ethical Considerations 

In the domain of consumer behavior, the impact of big data on pricing strategies is explored 

by Shiller (2013). They investigate the shift from traditional demographic data to web-

browsing data in predicting consumer behavior, using Netflix as a case study. Shiller's 

model, which integrates economic theory with machine learning and uses nearly 5,000 web-

browsing variables, demonstrates a potential profit increase of 12.2% with big data-driven 

personalized pricing, marking a significant improvement over demographic-based 

predictions. The study also discusses the broader implications of first-degree price 

discrimination through big data, highlighting potential equity concerns and consumer 

responses to such pricing strategies. 

The ethical and legal concerns in pricing, particularly online personalized pricing have also 

been highlighted (van der Rest et al., 2020a; van der Rest et al., 2020b), and suggest that the 

legal system may not provide immediate solutions. It emphasizes the need to examine ethical 

and legal implications in pricing, including indirect price discrimination through 

psychological pricing and neuromarketing. 

Shiller's research concludes with simulated scenarios that show how using large amounts of 

data (big data) can improve pricing strategies that are tailored to individual customers. These 

simulations help demonstrate the potential benefits of using detailed data to set prices more 

effectively for each person. This leads to a broader discussion on the evolving nature of price 

discrimination in the digital era and the need for ongoing research in this dynamic field. 

Overall, these studies collectively highlight the potential of real-time data analysis and 

personalization in both transportation management and consumer pricing strategies, marking 

a significant shift towards more nuanced and data-driven approaches in these fields. 

Personalized Pricing and Fairness: Balancing Profitability and Social Implications 

Kallus and Zhou (2021) delve into the complexities of personalized pricing in the modern 

data-rich environment. Their study extends beyond traditional demographic data, 

incorporating detailed behavioral data for more accurate consumer behavior predictions and 
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willingness to pay. A critical aspect of their research is exploring fairness in personalized 

pricing, particularly the challenges in ensuring equitable pricing strategies that avoid 

disproportionately impacting certain demographic groups. 

Kallus and Zhou (2021) develop a model that seeks to balance profitability with fairness and 

welfare considerations. A key finding is the need for careful management of personalized 

pricing to prevent unfair price burdens on specific groups, especially in sectors with profound 

social implications like healthcare and finance. The authors emphasize the necessity of 

equitable access to essential goods and services, discussing how personalized pricing can 

enhance access by extracting more revenue from higher-valuation groups to subsidize lower-

valuation ones. However, this raises concerns about the fairness of pricing across different 

demographic groups. 

The paper also examines the long-term dynamics of personalized pricing strategies. The 

authors suggest that while immediate financial benefits are evident, the long-term effects on 

customer loyalty, market dynamics, and social welfare require careful consideration. The 

study highlights the importance of algorithmic designs that take into account these broader 

implications, ensuring that pricing strategies are not only profitable but also equitable over 

time. 

Advancements in App-Based Recommender Systems: A Hierarchical Bayes Approach 

The article by Danaf et al. (2019) presents an innovative framework for estimating and 

updating user preferences in app-based recommender systems. Utilizing a Hierarchical Bayes 

procedure, the study accounts for both inter-consumer and intra-consumer heterogeneity, 

capturing random taste variations among individuals and across different choice situations. 

This framework involves three levels of preference parameters: population-level, individual-

level, and menu-specific, estimated periodically offline and updated in real-time as users 

make choices. 

The study addresses two significant gaps in discrete choice models in recommender systems. 

Firstly, it proposes an online estimation methodology for individual preferences, tackling 
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computational constraints associated with offline methods. Secondly, it acknowledges a more 

advanced level of heterogeneity, both inter- and intra-consumer, thus enhancing prediction 

quality and recommendation accuracy. This approach is particularly useful for systems where 

alternative attributes vary over time, like travel recommendations. 

One of the challenges discussed is calibrating choice models at the individual level, 

especially with limited data per user. The proposed online estimation procedure mitigates this 

by leveraging robust priors from the offline Hierarchical Bayes estimator, making it efficient 

and practical for real-time applications. The methodology's effectiveness is demonstrated 

through Monte-Carlo simulations and real data, showing that online parameter updates 

significantly improve real-time estimates. This framework marks a notable advancement in 

personalized recommendation strategies, boosting the capability of recommender systems to 

provide accurate, user-specific suggestions in dynamic, real-time environments. 

Bridging Theory and Practice: The Challenges and Prospects of Reinforcement Learning in 

Dynamic Traffic Control 

Han et al. (2023) provides an insightful resource in understanding the applications and 

challenges of Reinforcement Learning (RL) in dynamic traffic control systems. The 

comprehensive survey begins by examining the evolution and current state of RL-based 

traffic control strategies. One of the core focuses of the article is the practical challenges 

faced in implementing RL-based strategies in real-world scenarios. These challenges are 

broadly categorized into two areas: the learning costs associated with online RL methods and 

the transferability issues concerning offline RL methods. The paper provides a critical 

analysis of how online training methods, despite their potential, are impeded by high 

exploration and learning costs. Similarly, offline RL methods, although beneficial in theory, 

are heavily dependent on the accuracy of training simulators, raising concerns about their 

effectiveness in real-world applications. 

To further elucidate these challenges, the authors present detailed simulation experiments. 

These experiments are designed to assess both the learning costs of online RL methods and 

the transferability of offline RL methods. The findings reveal that online RL methods suffer 
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significantly due to the costs incurred during the exploration phase. Moreover, the 

performance of offline RL methods is largely dependent on the reliability of the simulation 

environment to real-world traffic conditions. This insight is critical, as it highlights the gap 

between theoretical RL models and their practical applications in traffic systems. 

Addressing these challenges, the article proposes several research directions, which include 

integrating physical traffic flow models into RL (physics-informed RL), learning from 

demonstration, meta-reinforcement learning (meta-RL), combining RL with traditional traffic 

control methods, and exploring adversarial reinforcement learning (ARL). Each of these 

approaches aims to mitigate the identified challenges, either by reducing learning costs, 

enhancing transferability, or improving the overall robustness of RL strategies in traffic 

control. It also reveals some results on RL strategy with different degrees of mismatch which 

highlighted the critical importance of precise training simulator accuracy for the efficacy of 

the RL-based ramp control strategy, as the strategy's performance degrades significantly 

when there is a substantial mismatch between training and testing environments. 

APPROACH AND METHODOLOGY 

This section outlines the modeling approach to quantifying and addressing equity 

gaps between groups using a mesoscopic cell-transmission-based traffic flow model with a 

trapezoidal fundamental diagram and using the framework to obtain values for different 

objectives. Furthermore, we assume that travelers do not equilibrate their route or time of 

departure. 

Equity Evaluation Framework 

Considering the five-step equity analysis framework for public engagement and 

building off the past study in Pandey et al. (2022), we first determine the relevant factors for 

equity analysis (similar to frameworks in Bills and Walker (2017), Litman (2021), and 

Twaddell and Zgoda (2020)): 

• Population for Analysis: We consider the population of travelers who wish to travel 

from an origin to a destination using their personal vehicle. These travelers can be 

further grouped based on their need for travel. The primary criterion used for 

grouping is the value of travel time (VOT) defined as the dollar amount value that an 
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individual is willing to sacrifice in order to save a unit of travel time. We measure 

VOT in $/hr. It has been shown that VOT is correlated with an individual's income.  

• Needs and concerns: Transportation systems connect individuals to their destination. 

We consider that the primary need of a traveler is to arrive at their destination as 

quickly as possible by minimizing the travel time they incur while driving on the 

roadway system. Given this need, an equity concern emerges when certain groups of 

travelers are forced to spend extra time on travel relative to other groups. As we 

demonstrate later, the travel time spent by low VOT travelers is commonly higher and 

if VOT correlates with travelers' income, then low-income travelers suffer a higher 

burden of congestion relative to high-income travelers. It is worth noting that 

transportation is one of the basic needs of travelers and is not a luxury item that only 

individuals with a high willingness to pay need to access. 

• Measuring impacts of proposed options: Express lanes charge tolls, and we 

measure how these lanes create equity differences by considering a modeling 

perspective described later in this section. Broadly, we consider the interaction 

between supply and demand side models for travelers using the corridor. 

• Determine disparities: In our analysis, disparities are measured by quantifying the 

average delay per person experienced by a traveler in each VOT group and using the 

maximum absolute difference of delay differential as the equity metric. We chose this 

metric since the purpose of managed lanes is to provide reliable travel time. This 

equity metric is defined later in terms of the modeling parameters. 

• Develop strategies to mitigate inequities: Once we quantify equity, we determine 

strategies that can address this gap. In particular, we consider various discounting 

methods for travelers in different VOT groups. 

Component Models 

Broadly, component models for express lanes can be categorized as shown in Figure 

1. Next, we discuss how these component models were implemented in this study. 

Consider a managed lane network in Figure 2 given by a directed graph 𝐺 𝑁,𝐴,𝑍  

where 𝑁 is the set of all nodes, 𝐴 is the set of all links, and 𝑍 is the set of all zones where 

trips begin or end. Let 𝑇 be the set of toll gantries where tolls are collected. We assume that 
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these gantries are located on links. Let 𝐴 ⊂ 𝐴 be the subset of links that charge a dynamic 

toll. Without loss of generality, the tolled links are selected such that the tail node of the links 

is a diverge node where travelers make a choice between express lane and general-purpose 

lanes. Assessing the impacts of various congestion pricing metrics is done by integrating 

models for interactions between transportation demand and supply, which we define next.  

 
Figure 2 An express lane network comprising of links that are part of express lanes and general-purpose lanes. 

Toll gantries are assumed to be located on highlighted toll links. Travelers enter the corridor through origin nodes and exit 
through destination nodes 

Demand characteristics: We consider deterministic time-dependent demand using 

the corridor between an origin-destination pair. Let 𝑑 𝑡  be the demand entering the 

corridor at time 𝑡 at origin node 𝑟 ∈ 𝑍 traveling towards destination 𝑠 ∈ 𝑍. For simplicity of 

the model, we assume that travelers do not adapt their departure time in response to tolls and 

thus 𝑑 𝑡  is assumed known apriori (estimated using the historical usage of the tolled 

facility). We group the travelers by their value of time (VOT) modeled using a discrete VOT 

distribution. Let 𝛼  represent the VOT for travelers in group 𝑘 ∈ 𝐾 where 𝐾 is the set of all 

groups. Without loss of generality, we order travelers such that 𝛼 𝛼 ⋯ 𝛼| |. As 

discussed earlier, such distributions can be estimated using historical travel patterns based on 

the income distribution for travelers using the corridor. 

Traffic flow model (Supply-side characteristics): Models for traffic flow determine 

the variation of traffic density for different times and locations expressed as a partial 

differential equation. The Lighthill-Whitham-Richards (LWR) assumes a deterministic 

relationship between density and flow expressed as the fundamental diagram. In our analysis, 

we model the evolution of traffic on the corridor using a macroscopic multiclass cell 

transmission model (Daganzo, 1995) which numerically solves the LWR equation by 

dividing the space into cells and time into discrete time-intervals (let 𝑇 be the set of all time 

intervals). The multiclass CTM model relates flow and density on each link using a 
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trapezoidal fundamental diagram. For brevity, we refer the reader to prior literature on 

multiclass CTM model for further details (Tan and Gao, 2018; Pandey and Boyles, 2018). 

Lane choice model: At each diverge point, a traveler from a VOT group 𝑘 ∈  𝐾 

compares the utility across different lane alternatives. Utility of travelers making a decision 

at toll gantry 𝑔 ∈ 𝑇 is determined as a linear combination of travel time and toll on managed 

lane and GPL options. We assume that the information about the current travel time is 

provided by measuring instantaneous travel time with no time lag, and that all travelers' 

utility are calculated only using the instantaneous travel time and toll information. For a 

given diverge point, we consider two routes connecting the current diverge with the first exit 

from the managed lane if a traveler were to enter the managed lane then. For example, in 

Figure 2, the routes considered at diverge node 𝑎 are 𝑎, 𝑏,𝑑, 𝑓,𝑔  and 𝑎, 𝑐, 𝑒,𝑔 . The utility 

on a route for a traveler in group 𝑘 ∈ 𝐾 is then given as the linear combination of travel time 

and toll: 𝑈 𝛼 𝑡 𝜏 where 𝑡 and 𝜏 are travel times and tolls for the route. 

 

Toll Optimization using Reinforcement Learning 

Once the interaction between supply and demand is established, the toll optimization 

problem can be formulated as the choice of toll 𝜏 𝑡  for toll link 𝑙 ∈  𝐴  at different time 

intervals 𝑡 ∈  𝑇 ⊂ 𝑇 (since tolls are updated less frequently than traffic updates). We 

consider two objectives for toll optimization: maximizing revenue and minimizing total 

system travel time (TSTT). 

Building on the open-source reinforcement learning framework in Pandey et al. 

(2020), we optimize the toll using a reinforcement learning framework. The components of 

the Markov decision process associated with the reinforcement learning problem are outlined 

below: 

• Timestep: Tolls are optimized over a finite time horizon for each time interval 𝑡 ∈

 𝑇 . 

• State: The traffic state at any given time is characterized by number of vehicles of 

each group 𝑘 ∈ 𝐾 across all cells in the network. 

• Action: The action in any state is the toll charged on each toll links 𝑙 ∈  𝐴 , where the 

toll is considered bounded 𝜏 𝑡 ∈  𝜏 , 𝜏  
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• Transition function: The transition from a given state and the chosen action is 

governed by the multiclass cell transmission model 

• Reward: The reward in each state after taking an action is governed by the tolling 

objective. For revenue maximization, the reward is the immediate revenue obtained in 

that time-step. For TSTT minimization, the reward is the equal to the total number of 

vehicles present in the network multiplied by minus 1 (to accommodate the 

minimization objective). 

 

RL Algorithms Considered in this Study 

For the experiments, we employed three algorithms: Soft-Actor Critic (SAC), PPO 

Proximal Policy Optimization (PPO) and Advantage Actor Critic (A2C) for the macroscopic 

simulations. SAC is an off-policy algorithm that optimizes a stochastic policy. It uses a 

technique called the clipped double-Q trick, which helps improve its performance. 

Additionally, because SAC's policy naturally involves some randomness, it also gains 

advantages similar to target policy smoothing. SAC is designed to perform well in 

continuous action spaces and has been successful in tasks ranging from robotic control to 

complex locomotion. PPO is an on-policy gradient method for RL. There are two main 

variants of PPO: one that clips the policy ratio and another that adds a penalty based on the 

KL divergence between the old and new policies. PPO's ease of implementation and efficient 

use of data have made it a popular choice for many RL tasks. It strikes a balance between 

data efficiency, ease of tuning, and final performance. A2C maintains a policy (actor) that 

suggests the next action to take given the current state of the environment, and a value 

function (critic) that evaluates the chosen action. The "advantage" part of the name refers to 

how the algorithm estimates the relative value of each action in a given state, which helps in 

reducing the variance of the updates. A2C works by simultaneously updating the actor and 

critic using gradients that aim to maximize expected future rewards. 

We use the OpenAI-gym RL environment for macroscopic simulation provided by 

Pandey et al. (2020) and use the open-source implementation of the Soft-Actor Critic 

algorithm (Hou et al., 2020) to find tolls that maximize the reward over the time horizon. The 

SAC algorithm has been shown to converge to optimal tolls for the express lane pricing 
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problem (Pandey et al., 2020) and in our experiments, we observe the same pattern of 

convergence. 

Overview Algorithm 

The reinforcement learning algorithm proceeded in following steps (See Pandey et al. 

(2020) for additional mathematical details on the parameters and functions): 

Step 1: Initialize policy parameters and value function parameters.  

Step 2: Simulation N Training Epoch (N=500 for our experiments)  

for index ID ∈ {1,2….N} do 
Collect set of trajectories by running policy for ten 2-hour simulations on 
network 
Compute rewards to go for the defined reward value 
Compute advantage estimates using rewards-to-go 
Update Policy parameters using A2C, PPO, or SAC updates 
Update value function approximation parameters 

end for 

Step 3: Report and analyze the performance statistics over the training period 

 

FINDINGS AND RESULTS 

For our analysis, four abstract simulation networks were considered from the literature 

(Pandey et al., 2020), as depicted in Figure 3. The data for Loop-1 express lanes were derived 

from the regional model. 
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Figure 3 Test Networks Considered for Training of Reinforcement Learning Algorithms 

A discrete value of time distribution was assumed over a three-hour peak period, as shown in 

Figure 3. Broadly, this distribution follows the Burr distribution observed in the literature. 

For any five-minute time period, the maximum toll was set at $8, and the minimum toll was 

set at 10 cents. We used the simulation model for the corridor created in an earlier study, 

which utilizes the multiclass cell transmission model for traffic simulation. Lane choice is 

governed by binary logit and decision-route models. Toll profiles were updated in five-

minute intervals. Tolls were analyzed on the Pareto frontier of multiple objectives, such as 

total system travel time (TSTT), revenue, and equity. 

To model the discount, we optimize, for any time period 𝑡, the discount 𝑑 𝑡  given 

to group 𝑘 ∈ 𝐾. Our preliminary model scales the discounts linearly by controlling the 

maximum discount offered to travelers with minimum value of time (VOT). This is shown in 

Figure 4(a) as restricted discount case. Our secondary model allows the discounts to be any 

value in the specific range between the maximum and minimum discount (Figure 4(b) or 

unrestricted discount). As discussed, next, the revenue maximizing cases result in no 
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discount for all travelers, while when the equity gap across travelers is minimized, then 

discount offered can be positive anywhere in the green rectangular box shown in Figure 4(b). 

 

Figure 4: (a) Discount case 1 where travelers with minimum VOT receive the maximum discount which is the 
control variable in our experiments (Restricted Discount), and (b) Discount case 2 where travelers can receive any discount 
personalized to their and operators’ needs (Unrestricted Discount). 

The A2C, PPO, and SAC reinforcement learning algorithms were trained on all test networks 

considering various objectives. The findings will be discussed next. 

First, we see that for minimizing TSTT, the algorithms obtained similar reward as a function 

of the number of training iterations was fairly consistent, except for a noticeable 

improvement for PPO algorithm on LBJ network, which suggests that PPO is robust when 

learning because of the intricacies of LBJ network.  But looking at the performance on other 

objectives (such as maximizing revenue), we see that SAC outperforms PPO in obtaining 

revenues in fewer training steps (as shown in Figure 5). This might suggest each algorithm 

has networks that they perform and objectives they perform better on, which is indicative of 

the experimental nature of reinforcement learning algorithms as indicated in the literature.  
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Figure 5: Reward profile (y-axis) as a function of number of training indices (x-axis) for four networks at 0% 
discount: SESE (top-left), DESE (top-right), LBJ (bottom-left), and Mopac (bottom-right). The three algorithms considered 

are SAC (blue), PPO (green), and A2C (orange). 

Second, we see the max throughput values were similar in each network for all algorithms 

and the values were high, it might be the case that all the algorithms learned that well and got 

the highest values for every one of them. Finally, it can be seen that revenue was maximized 

in the scenario where there is no discount than where there is, with the exception of Mopac 

network where we obtained similar revenues under 25% discount as without discount. 

Details for the algorithmic runs are shown in Tables in Appendix 2. 

Initial results showed that all algorithms learned similarly overall, although some algorithms 

performed better than the others on different networks, this varying performance could be 

due to specific network intricacies, more effective hyperparameter tuning or varying 

strengths in handling the complexity and size of the network data. However, offering 

discounts to induce equity did not yield favorable results as the algorithms all learned that to 

maximize revenue, it is better off minimizing discount for all groups and when the general-

purpose lane experiences high density, then travelers opt for the managed lanes. 
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We then considered forcing the discounts to enable the algorithms to provide discount to 

low-income group. We also change the objectives to have minimize equity gaps among all 

VOT group travelers. The key findings are discussed next. 

When striving to maximize revenue, Episode TSTT (EpTSTT) was the highest for VOT 

$10/hr. and progressively decreased for higher VOTs as depicted in Figure 6.  This outcome 

aligns with expectations, as individuals with higher VOTs are more inclined to use toll lanes 

to expedite their travel times. Additionally, since lower VOT is commonly proportional to 

lower income group, we can argue that travelers with low VOT are worse off under pricing 

that maximizes revenue, thus the equity gap increase. Furthermore, SAC initially exhibits 

similar EpTSTT across all VOTs before diverging noticeably, whereas A2C starts with 

varying values and generally escalates over epochs. This trend suggests that while the 

algorithm behave differently initially, they eventually showed the delay differentials with the 

lowest VOT experiencing the highest delay. However, the delay reduced minimally with 

higher discounts for all groups. 

 
Figure 6: Revenue Optimizing VOT profiles at 33% Discount. A2C plot (left) showing rising travel times for VOTs 

with higher increase for lower VOTs. SAC (right) learning to give discounts more to higher VOT to incentivize them to use 
the ML and thus reduce travel time.  

SAC initially exhibits similar EpTSTT across all VOTs before diverging noticeably, whereas 

A2C starts with varying values and generally escalates over epochs. This trend suggests that 

the algorithm learned to give discounts more to higher VOTs as they are likely to take the 

tolls. The growth also amplified with higher discounts as shown in Figure 6. 
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When prioritizing the minimization of equity gaps and using restricted discounts, a 

decreasing revenue pattern is observed. This is accompanied by lower EpTSTT for 25% 

discounts compared to 50% across both algorithms as seen in Figure 7. This could be 

attributed to 25% being a conservative discount value that maintains an optimal balance of 

travelers in both hot lanes and GPL. Conversely, offering high discounts like 50% proves 

ineffective as it prompts more individuals to opt for the hot lane, consequently increasing 

TSTT for all. Unlike the revenue maximization scenario, by the end of the training, the 

algorithms learned to offer uniform TSTT to all travelers irrespective of VOT. 

 
Figure 7: Revenue vs TSTT Minimizing Equity Gap (Forced discount) 25% discount showing decreasing trend in 

travel time with low revenue, 50% showing similar but lower revenue and higher travel time. 

When aiming to minimize equity gaps without enforcing discounts, revenue also experiences 

a decline as the objective could only be achieved by giving discounts to lower VOT groups. 

The TSTT and revenue remain unaffected by the maximum discount offered as shown in 

Figure 8, yielding similar results with variations stemming from exploration (where agents 

attempt to search for an optimal result). Similar to the scenario with enforced discounts, the 

algorithms provide consistent TSTT to all travelers at the end of training. 
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Figure 8: Equity Gap Plots for VOTs. 25% discount showing decreasing trend in travel time and no equity gap 

with ongoing training, 50% discount showing same but higher travel time for all which suggests the value is not the optimal 
discount.  

Comparing the revenue from the most equitable profile to the max revenue enables us to 

compute the price of fairness (Bertsimas et al., 2011). 

𝑃𝑟𝑖𝑐𝑒 𝑜𝑓 𝐹𝑎𝑖𝑟𝑛𝑒𝑠𝑠  
𝑅𝑒𝑣𝑒𝑛𝑢𝑒 𝑎𝑡 𝑛𝑜 𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡 𝑅𝑒𝑣𝑒𝑛𝑢𝑒 𝑎𝑡 𝑙𝑜𝑤𝑒𝑠𝑡 𝑒𝑞𝑢𝑖𝑡𝑦 𝑔𝑎𝑝

𝑅𝑒𝑣𝑒𝑛𝑢𝑒 𝑎𝑡 𝑛𝑜 𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡
 

  

𝑃𝑟𝑖𝑐𝑒 𝑜𝑓 𝐹𝑎𝑖𝑟𝑛𝑒𝑠𝑠  
4502 386

4502
 .914 

This means that in order to provide the most equitable tolling; we sacrifice 91.4% of our 
revenue for the LBJ network. 
 

CONCLUSIONS, RECOMMENDATIONS, AND FUTURE WORK 

This report analyzed reinforcement learning algorithms in the context of multi-

objective optimization for express lane pricing. First of our findings indicates that commonly 

used objectives for managing express lane systems such as improving revenue, reducing total 

system travel time (TSTT), and enhancing equitable access can be at conflict with each other. 

Specifically, we observe that optimizing for revenue might only widen equity gap. In terms 

of the usefulness of RL algorithms, SAC, A2C, and PPO algorithms each showed distinct 

abilities to optimize rewards and reduce total system travel time (TSTT) when using 

personalized tolling strategies.  

The report also reviews the critical issue of ensuring equity in managed lanes 

highlighting the importance of equitable access to transportation infrastructure. Separating 
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travelers based on their VOT, we see that we can reduce the equity gap among the travelers, 

although it comes with a 91% loss on revenue, which may not be acceptable in practical 

cases. Offering discounts on toll has also been seen to minimize the equity gap and reduce 

TSTT for all. Given the unique characteristics of each network, including their dynamics and 

the diverse groups of travelers they serve, the outcomes of these analyses can vary (such as 

the extent to which the objectives are at a conflict). Therefore, tailored tolling approaches 

may be necessary to accommodate the specific needs of each system. 

Recommendations: 

1. While maximizing revenue and efficiency in managed lanes is a priority for 

investors, ensuring equitable access to these infrastructures is crucial. Instead 

of solely aiming to minimize equity gaps, implementing personalized tolling 

can maintain high revenue while also reducing travel times for low-income 

travelers. 

2. Since equity remains a significant concern for many stakeholders, and 

achieving it can be expensive, partnerships with government bodies or 

nonprofit organizations focused on enhancing urban mobility and access 

should be considered. This collaboration can help ensure shorter travel times 

for all travelers, regardless of their value of time. 

3. The effectiveness of these strategies on mobility should be regularly assessed, 

especially the improvements in throughput and/or corridor travel time 

efficiency and reliability. Using the insights from these evaluations can further 

optimize the system's efficiency. 

Future Work 

Based on the insights from analyzing reinforcement learning algorithms in 

transportation system optimization, future research should investigate comprehensive 

multiobjective frameworks. Such frameworks should not only aim to minimize Total System 

Travel Time (TSTT), optimize revenue, and minimize equity gaps but also consider broader 

objectives like environmental impacts, user satisfaction, social equity, and particularly 

fairness over time.  
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One key limitation of the proposed work is that it is based on mesoscopic simulations 

which do not consider departure time choice and/or weaving operations around toll entrance. 

Moreover, conducting extensive simulations and real-world pilot studies across various 

network types will be crucial in evaluating the practical effectiveness of these strategies. A 

significant area of focus should be the long-term fairness and sustainability of access to 

managed lanes, especially for low-income travelers. It is essential to monitor if these 

travelers continue to use managed lanes after exhausting any provided credits or subsidies, 

ensuring that the tolling strategies remain equitable over time and do not inadvertently 

exclude vulnerable populations. This comprehensive method involves working closely with a 

wide range of people, such as government officials, those who plan transportation, and local 

communities. The goal is to understand their requirements and evaluate the broader effects 

and rules related to introducing advanced tolling systems and inclusive approach promises to 

advance our understanding and implementation of equitable, efficient, and sustainable 

transportation solutions. 

 

REFERENCES  

AbuLibdeh, A. (2017). Traffic Congestion Pricing: Methodologies and Equity Implication 

(Rep.). IntechOpen. doi:10.5772/66569 https://www.intechopen.com/books/urban-

transport-systems/traffic-congestion-pricing-methodologies-and-equity-implications  

Azevedo, C. L., Seshadri, R., Gao, S., Atasoy, B., Akkinepally, A. P., Christofa, E., ... & 

Ben-Akiva, M. (2018, January). Tripod: sustainable travel incentives with prediction, 

optimization, and personalization. In Proceedings of the Transportation Research 

Record 97th Annual Meeting. 

Belletti, F., Haziza, D., Gomes, G., & Bayen, A. M. (2017). Expert level control of ramp 

metering based on multi-task deep reinforcement learning. IEEE Transactions on 

Intelligent Transportation Systems, 19(4), 1198-1207. 



 

 

A MORL Framework for Equitable Toll Design on Express Lanes  29 

 Bertsimas, D., Farias, V. F., & Trichakis, N. (2011). The price of fairness. Operations 

Research, 59(1), 17-31. 

Bills, T. S., & Walker, J. L. (2017). Looking beyond the mean for equity analysis: Examining 

distributional impacts of transportation improvements. Transport Policy, 54, 61-69. 

Chen, S. J., Chiu, W. Y., & Liu, W. J. (2021). User preference-based demand response for 

smart home energy management using multiobjective reinforcement learning. IEEE 

Access, 9, 161627-161637. 

Chu, T., Wang, J., Codecà, L., & Li, Z. (2019). Multi-agent deep reinforcement learning for 

large-scale traffic signal control. IEEE Transactions on Intelligent Transportation 

Systems, 21(3), 1086-1095. 

 Daganzo, C. F. (1995). The cell transmission model, part II: network traffic. Transportation 

Research Part B: Methodological, 29(2), 79-93. 

Danaf, M., Becker, F., Song, X., Atasoy, B., & Ben-Akiva, M. (2019). Online discrete choice 

models: Applications in personalized recommendations. Decision Support Systems, 

119, 35-45. 

 Debreczeni (2021). Low-Income Toll Program Study for I-405 SR 167 Express Toll Lanes. 

URL: https://wstc.wa.gov/wp-content/uploads/2021/08/2021-WSTC-Tolling-Equity-

Report.pdf. Last accessed: Aug, 2022. 

dos Santos, G. D., & Bazzan, A. L. (2022). A Multiobjective Reinforcement Learning 

Approach to Trip Building. In ATT@ IJCAI (pp. 160-174). 



 

 

A MORL Framework for Equitable Toll Design on Express Lanes  30 

 Gemmink, M. W. T. (2019). The adoption of reinforcement learning in the logistics 

industry: a case study at a large international retailer (Master's thesis, University of 

Twente). 

 Gordon, A. (2021). “The broken algorithm that poisoned American transportation.” URL: 

https://www.vice.com/en/article/v7gxy9/the-broken-algorithm-that-poisoned-

american-transportation-v27n3. Last accessed: Aug, 2022. 

Hajar, M. S., Kalutarage, H., & Al-Kadri, M. O. (2023, January). RRP: A reliable 

reinforcement learning based routing protocol for wireless medical sensor networks. 

In 2023 IEEE 20th Consumer Communications & Networking Conference (CCNC) 

(pp. 781-789). IEEE. 

 Hall, J. D. (2018). Pareto improvements from Lexus Lanes: The effects of pricing a portion 

of the lanes on congested highways. Journal of Public Economics, 158, 113-125. 

Han, Y., Wang, M., & Leclercq, L. (2023). Leveraging reinforcement learning for dynamic 

traffic control: A survey and challenges for field implementation. Communications in 

Transportation Research, 3, 100104. 

 Hayes, C. F., Rădulescu, R., Bargiacchi, E., Källström, J., Macfarlane, M., Reymond, M., ... 

& Roijers, D. M. (2022). A practical guide to multi-objective reinforcement learning 

and planning. Autonomous Agents and Multi-Agent Systems, 36(1), 1-59. 

Hou, Z., Zhang, K., Wan, Y., Li, D., Fu, C., & Yu, H. (2020). Off-policy maximum entropy 

reinforcement learning: Soft actor-critic with advantage weighted mixture policy 

(sac-awmp). arXiv preprint arXiv:2002.02829. 



 

 

A MORL Framework for Equitable Toll Design on Express Lanes  31 

Kallus, N., & Zhou, A. (2021, March). Fairness, welfare, and equity in personalized pricing. 

In Proceedings of the 2021 ACM Conference on Fairness, Accountability, and 

Transparency (pp. 296-314). 

Klar, M., Langlotz, P., & Aurich, J. C. (2022). A framework for automated multiobjective 

factory layout planning using reinforcement learning. Procedia CIRP, 112, 555-560. 

 Kuang, N. L., & Leung, C. H. (2019). Leveraging Reinforcement Learning Techniques for 

Effective Policy Adoption and Validation. In Computational Science and Its 

Applications–ICCSA 2019: 19th International Conference, Saint Petersburg, Russia, 

July 1–4, 2019, Proceedings, Part II 19 (pp. 311-322). Springer International 

Publishing. 

Li, Y. (2017). Deep reinforcement learning: An overview. arXiv preprint arXiv:1701.07274. 

https://arxiv.org/abs/1810.06339 (Last accessed, Jun 2024) 

Litman, T. (2021). Evaluating Transportation Equity. Victoria Transport Policy Institute. 

https://www.vtpi.org/equity.pdf 

Liu, M. V., Reed, P. M., Gold, D., Quist, G., & Anderson, C. L. (2023). A Multiobjective 

Reinforcement Learning Framework for Microgrid Energy Management. arXiv 

preprint arXiv:2307.08692. 

 Lombardi, C., Picado-Santos, L., & Annaswamy, A. M. (2021). Model-based dynamic toll 

pricing: An overview. Applied Sciences, 11(11), 4778. 

Mason, K., & Grijalva, S. (2019). A review of reinforcement learning for autonomous 

building energy management. Computers & Electrical Engineering, 78, 300-312. 



 

 

A MORL Framework for Equitable Toll Design on Express Lanes  32 

 Nazari, M., Oroojlooy, A., Snyder, L., & Takác, M. (2018). Reinforcement learning for 

solving the vehicle routing problem. Advances in Neural Information Processing 

Systems, 31. 

 Pandey, V., & Boyles, S. D. (2018). Dynamic pricing for managed lanes with multiple 

entrances and exits. Transportation Research Part C: Emerging Technologies, 96, 

304-320. 

Pandey, V., Wang, E., & Boyles, S. D. (2020). Deep reinforcement learning algorithm for 

dynamic pricing of express lanes with multiple access locations. Transportation 

Research Part C: Emerging Technologies, 119, 102715. 

Pandey, V., Alamri, B. G., Khoury, H., & Bakre, M. (2022). Equitable Dynamic Pricing for 

Express Lanes. Center for Advanced Transportation Mobility, Technical Report#13. 

URL: https://digital.library.ncat.edu/catm/13/  

Peng, B., Keskin, M. F., Kulcsár, B., & Wymeersch, H. (2021). Connected autonomous 

vehicles for improving mixed traffic efficiency in unsignalized intersections with 

deep reinforcement learning. Communications in Transportation Research, 1, 

100017. 

Shiller, B. R. (2013). First Degree Price Discrimination using Big Data (p. 32). Brandeis 

Univ., Department of Economics. 

Su, H., Zhong, Y. D., Chow, J. Y., Dey, B., & Jin, L. (2023). EMVLight: A multi-agent 

reinforcement learning framework for an emergency vehicle decentralized routing 

and traffic signal control system. Transportation Research Part C: Emerging 

Technologies, 146, 103955. 



 

 

A MORL Framework for Equitable Toll Design on Express Lanes  33 

 Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction (2nd ed.). The 

MIT Press. 

Tan, Z., & Gao, H. O. (2018). Hybrid model predictive control based dynamic pricing of 

managed lanes with multiple accesses. Transportation Research Part B: 

Methodological, 112, 113-131. 

Tittaferrante, A., & Yassine, A. (2021). Multiadvisor reinforcement learning for multiagent 

multiobjective smart home energy control. IEEE Transactions on Artificial 

Intelligence, 3(4), 581-594. 

Tittaferrante, A., & Yassine, A. (2022). Multiadvisor reinforcement learning for multiagent 

multiobjective smart home energy control. IEEE Transactions on Artificial 

Intelligence, 3(4):581-594. doi: 10.1109/TAI.2021.3125918. 

Twaddell, H., & Zgoda, B. (2020). Equity Analysis in Regional Transportation Planning 

Processes, Volume 1: Guide (No. Project H-54). 

van der Rest, J. P., Wang, L., & Miao, L. (2020a). Ethical concerns and legal challenges in 

revenue and pricing management. Journal of Revenue and Pricing Management, 19, 

83-84. 

van der Rest, J. P. I., Sears, A. M., Miao, L., & Wang, L. (2020b). A note on the future of 

personalized pricing: Cause for concern. Journal of Revenue and Pricing 

Management, 19, 113-118. 

Vázquez-Canteli, J. R., Kämpf, J., Henze, G., & Nagy, Z. (2019). CityLearn v1.0: An 

OpenAI Gym environment for demand response with deep reinforcement learning. In 



 

 

A MORL Framework for Equitable Toll Design on Express Lanes  34 

Proceedings of the 6th ACM International Conference on Systems for Energy-

Efficient Buildings, Cities, and Transportation (pp. 356-357). Association for 

Computing Machinery. https://doi.org/10.1145/3360322.3360998 

Wang, X., Yang, H., Zhu, D., & Li, C. (2012). Tradable travel credits for congestion 

management with heterogeneous users. Transportation Research Part E: Logistics 

and Transportation Review, 48(2), 426-437. 

Wei, H., Zheng, G., Gayah, V., & Li, Z. (2021). Recent advances in reinforcement learning 

for traffic signal control: A survey of models and evaluation. ACM SIGKDD 

Explorations Newsletter, 22(2), 12-18. 

 Xie, Y., Seshadri, R., Zhang, Y., Akinepally, A., & Ben-Akiva, M. E. (2024). Real-time 

personalized tolling for managed lanes. Transportation Research Part C: Emerging 

Technologies, 163, 104629. 

Zhang, Y. (2019). Real-time personalized toll optimization based on traffic predictions. PhD 

thesis, Massachusetts Institute of Technology. 

Zhang, Y., Atasoy, B., & Ben-Akiva, M. (2018). Calibration and optimization for adaptive 

toll pricing (No. 18-05863). 

Zhou, D., & Gayah, V. V. (2023). Improving Deep Reinforcement Learning-Based Perimeter 

Metering Control Methods With Domain Control Knowledge. Transportation 

Research Record, 2677(7), 384-405. https://doi.org/10.1177/0361198123115246. 

 



 

 

A MORL Framework for Equitable Toll Design on Express Lanes  35 

APPENDIX – 1   

 

Publications, presentations, posters resulting from this project: 

Tiamiyu, R., Bowens, C. and Pandey, V., (2024). Model-Driven Equitable Toll Design for 

Express Lanes. Poster Presented at the NCA&T College of Engineering, Graduate 

Student Symposium. 

Tiamiyu, R., Bowens, C. and Pandey, V., (2024). A Reinforcement Learning Framework for 

Equitable Toll Design in Express Lanes. Presented at the 2024 CATM Symposium. 

PDFs for the poster and presentation are attached separately to the report. 
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APPENDIX – 2 SIMULATION RESULTS AS TABLES  

The tables show the best obtained reward for revenue maximization objective for different 
algorithms under varying levers of unrestricted discounts. 

NO DISCOUNT 

 Algorithm LBJ SESE MOPAC DESE 

TSTT at maximum revenue 
SAC 1417 4744 15425 462 

A2C 1420 4819 14643 2289 

PPO 1422 4750 16208 2284 

Maximum Revenue 
SAC 3600 13053 26878 597 

A2C 4502 11725 26457 414 

PPO 4875 11428 30901 437 

Throughout at Maximum 
Revenue 

SAC 7616 11475 54325 11431 

A2C 7616 11475 54212 11427 

PPO 7616 11475 53225 11166 
 

25% DISCOUNT 

 Algorithm LBJ SESE MOPAC DESE 

TSTT at maximum revenue 
SAC 1421 4695 15770 564 
A2C 1389 4748 13518 747 
PPO 1421 4824 15842 1798 

Maximum Revenue 
SAC 2992 13777 26474 566 

A2C 4493 11395 23112 374 
PPO 4728 12285 31545 399 

Throughout at Maximum 
Revenue 

SAC 7616 11475 53569 11433 
A2C 7616 11475 54584 11430 

PPO 7616 11475 53515 11265 
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50% DISCOUNT 

 Algorithm LBJ SESE MOPAC DESE 

TSTT at maximum revenue 
SAC 1341 4628 15805 464 

A2C 1386 4711 12053 734 

PPO 1389 4755 15174 1321 

Maximum Revenue 
SAC 4785 13987 26816 567 

A2C 4228 10784 19797 396 

PPO 4824 11776 27467 386 

Throughout at Maximum 
Revenue 

SAC 7616 11475 53652 11432 

A2C 7616 11475 55159 11430 

PPO 7616 11475 53769 11430 
 

70% DISCOUNT 

 Algorithm LBJ SESE MOPAC DESE 

TSTT at maximum revenue 
SAC 1421 4730 15825 1570 

A2C 1298 4687 11118 634 

PPO 1318 4764 14410 751 

Maximum Revenue 
SAC 4263 13050 26619 678 

A2C 4000 10359 16955 444 

PPO 4462 10775 26586 450 

Throughout at Maximum 
Revenue 

SAC 7616 11475 53578 11434 

A2C 7616 11475 55517 11429 

PPO 7616 11475 54332 11430 
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Broadly, the model for discount 
that we consider is the following:

For any time-period , select the 
discount to give to group 

Our preliminary model scales the 
discounts linearly by controlling 
the maximum discount offered to 
travelers with minimum VOT
For demonstrations we narrow 
our focus to two groups of 
travelers with VOTs ( and 

)
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• How should these discounts be implemented?
Indirect and more acceptable alternatives can be chosen
Examples: 

• I-10 Express Lanes: low-income travelers receive $25 
credit on transponders and monthly fees waived;

• Public buses can use express lanes for free (I-95 Miami, 
FL)

• “24-hours-free” discount publicity (NTE/LBJ Dallas, TX)

Other real-world challenges:
Data-driven quantification of traveler’s VOT
Extending these findings for real-world implementations of 
express lanes



•



• Background:
• Express lanes mitigate traffic congestion and provide reliable 

travel time by using the existing capacity of the roadway
• As of January 2024, there are 70+ Express lane projects across 

the US
• Currently deployed methods rely on look-up tables (based on 

speed, density, or occupancy measurements) or other heuristics 
to update toll with time, which may not be optimal per different 
objectives 

• Determining dynamic prices is a complex optimal control 
problem with multiple locations of trance/exits, complex driver 
behavior, and uncertainties in demand and travel time.

Students(s): Ridwan Tiamiyu (MS), Christian Bowens (BS)
Advisors: Dr.  Venktesh Pandey

Model Driven Equitable Discount Design for Express Lanes

Overview
f

f

collaborate. innovate. educate.

Equity Considerations

Model-based Evaluation Components

Conclusions and Ongoing Work
1. Conclusions:

• Through simulation-based analysis, we argue that the choice of dynamic tolls impact the delay 
differentials across different groups

• Focusing solely on revenue optimization might worsen equity gap. Equity gap could be narrowed when 
optimizing for fairness but lead to significant revenue losses, which may be unsustainable.

• Equitable access within ML is crucial, and VOT-based discounts could bridge equity gap.
2. Implementation suggestions: Balanced approach to pricing.

• For example: Establish a pricing strategy that balances the need for revenue generation with the goal of 
minimizing equity gaps, possibly by using a tiered system where discounts are based on VOT and income 
levels; Implementing a cap on minimum toll while using equity gap minimization model.

• Ongoing work: Derive numerical bounds on price of fairness as a function of express lane characteristics, 
and integrate data-driven quantification of traveler’s VOT in discount design

Acknowledgement: Support for this research is provided by the Center for Advanced Transportation Mobility, 
University Transportation Center. If you’d have any additional feedback or questions, please reach at 

rtiamiyu@aggies.ncat.edu

Source:  https://www.hntb.com/Projects/I-15-Priced-Managed-Lanes

• Research question: How can we quantify and address the long-term equity impacts of express 
lanes from pricing/operations perspective?

• Literature on design of tolls:

• Various pricing methods have been proposed based on techniques such as dynamic 
programming (Yang et al., 2012), feedback integral control (Jin et al., 2020), single-bottleneck 
model (Hall, 2018), dynamic traffic assignment (Zhang et al., 2019), model predictive control 
(Tan and Gao, 2020), and deep-reinforcement learning (Pandey et al., 2020)

• Göçmen et al. (2015) and Pandey et al. (2020) showed that certain toll profiles may have 
unintended consequences such as jam-and-harvest nature of revenue maximizing tolls

• Modeling assumptions: We consider a mesoscopic cell-transmission based traffic flow model 
with trapezoidal fundamental diagram which ignores impacts of lane changes. Furthermore, we 
assume that travelers do not equilibrate their route or time of departure. In this study, we conduct 
a simulation-based analysis of dynamic tolls. Relaxing some of these limiting assumptions is part 
of the ongoing work.

• NCHRP’s five step 
procedure for analyzing 
equity concerns in 
transportation projects 
is shown along with 
components considered 
in this project

➢ Maximizing revenue increases total system 
travel time (TSTT) as express lanes aren’t being 
used to its capacity and congestions build up.

➢ Reinforcement Learning dynamics and performance 
• Soft Actor Critic (SAC) algorithm showed uniform TSTT across 

VOTs initially, diverging later, whereas A2C demonstrated 
variability, suggesting a learned preference for discounting higher 
VOTs as higher VOT travellers are more likely to use ML.

• Variable outcomes across different algorithms suggest influences 
from unique network characteristics, hyperparameter tuning, or 
algorithmic strengths in data complexity.

➢Objectives minimizing equity gaps were suboptimal 
for revenue as algorithms aimed to minimize delay 
differential for all. This is because the algorithms 
prioritize an egalitarian approach to service levels.

➢Offering very high discount encourages more 
travelers to use the ML thus increasing travel 
time for all. A more conservative reduces TSTT and 
equity gap simultaneously.

➢When maximizing revenue, the RL algorithm chose to 
minimize discount for all unless mandatory discounts 
were enforced. This is intuitive as giving discount to 
no one can maximize revenue and potentially benefit 
from JAH. However, when optimizing for equity, 
enforcing discounts doesn’t have much effect.

• We plot sampled data on travel time 
difference and toll on express lane 
observed for revenue-maximizing tolls
• the realized values in the space only correspond to 

tolls that allow travelers in group 1 to choose ML, 
and travelers in group 2 can never access ML for 
the set value of tolls (which are too high for their 
range)

• Hence, we argue that by simply setting 
the discounts in proportion to travelers’ 
VOT, the delay differentials across the 
groups are equitable. 
• If we assume that the traveler with the highest VOT 

receives no discount, then the following proposition 
establishes the discount for other VOTs.

• We can show that linear-varying 
discounts address delay differentials 
across groups
• Such tolls can be made possible through 

technologies such as phone apps or personalization 
of tolls

Components for 
modeling express lanes

Traveler choice models
Including lane-choice, route-
choice, and departure time 

choice

Lane choice modelled using 
value of time (VOT) 

distribution or binary logit 
model 

Traffic flow model
• Microscopic / mesoscopic

Captures interaction of 
vehicles, lane changes, and 

queue spillback

Toll pricing model (reinforcement learning framework)
Objective: minimize total system travel time (TSTT), maximize revenue, or others

Constraints:  minimum and max toll; minimum speed limit on express lanes

Demand model
• Deterministic or 

Stochastic
• Measured in real-time or 

assumed historic 
distribution

Observations

Public Engagement
Identify needs 

& concerns
Identify 

population for 
analysis

Measure impacts of 
proposed projects

Determine 
disparities

Develop strategies to 
mitigate inequities 

Travel 
groups with 

differing 
values of 

time (VOT)

Travelers desire 
to have low 

travel time and 
spend least 

amount of time 
driving

Using a 
mesoscopic traffic 
simulation model 
for evaluating the 
impact of project

Measure the 
differential of 
delays across 
travel groups

Potentially through 
design of tolls, 

discounts, subscription-
based coupons, and 

differential prices

• “Jam-and-harvest” (JAH) nature of revenue maximizing 
tolls can contribute to inequities

Equitable discount design
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 d
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• Price of fairness (POF) defined as the 
approximate loss of "system efficiency" to 
allow for fair outcomes

• Measure it in terms of loss of revenue or 
increase of total system delay

POFRevenue = Loss of revenue for fair outcomes

Best Possible Revenue

POFTSTT = Increase in system delay for fair outcomes

Lowest Possible Delay

• In our experiments, the price of fairness wrt
revenue was 0.91, while wrt TSTT was the 
most equitable value was 0.69 − 0.79. This 
means that 91% of the expected revenue was 
lost to ensure equity. The travel time, also 
increased by 69% - 79%.
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