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1 EXECUTIVE SUMMARY 
As the aviation industry continually grows and the demand for air travel increases, one 

important factor that determines the sustainability of this growth is Air Traffic Control (ATC). 

ATC is the heart of air operations and is a ground-based global system that has the primary 

purpose of providing air traffic services that include preventing the collision of aircraft; 

expediting the flow of air traffic in an orderly manner; providing en route flight advisory to 

pilots; ground taxiing, landing, and take off procedures; among many other functions. In 

addition, by following Air Traffic Management (ATM) policies, ATC is responsible for the 

operation of aircraft within a given airspace structure. Dynamic Airspace Configuration (DAC) 

offers a new airspace structure that is dynamic. This means that DAC has the ability to be 

flexible based on user demand while meeting the constraints of elements such as weather, fleet 

diversity, congestion, and sector complexity  (Kopardekar, Bilimor, & Sridhar, 2007). Since 

DAC is able to maximize air traffic throughput while accommodating dynamic traffic changes, 

it is suitable for emergency evacuation when the traffic demand changes rapidly and under a 

lot of constraints. Given that DAC is a new paradigm within the aviation industry, this study 

is looking at ways to effectively transition the static airspace configuration to this newly 

proposed configuration and its potential to apply it for emergency evacuation. 

 

To provide an optimal solution to realize DAC, the literature review section discusses and 

provides insight into how artificial intelligence (AI) can be used to optimize mobility in DAC 

during emergency situations by looking at current ground transportation practices that could 

potentially be transferred to DAC. Then the implementation is conducted through two phases. 

First, a Spatial-temporal graph neural network is proposed to make predictions on each 

airport’s workload. The purpose of the second stage is to realize practical DAC by balancing 

the workload among sectors to improve air traffic control efficiency, thus maximizing the air 

traffic throughput. Our proposed approach is evaluated under two different experiment settings 

for different traffic conditions. The result shows it is able to decrease the unbalanced level of 

ATC workload by over 50%. It is believed that our approach has the potential to be further 

developed into a recommendation system to assist with airspace configuration during 

emergency evacuations. 
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2 BACKGROUND  
This literature review aims to present the application of machine learning algorithms in DAC 

emergency procedures by identifying algorithms and practices in transportation systems that 

could potentially be carried over to DAC. At the time of writing this review and to the best of 

our knowledge, DAC is still a new field that is currently under investigation and there are not 

many resources and tangible real-time applications of emergency response procedures in DAC. 

Therefore, we use the ground transportation approach in addition to existing airspace-focused 

research to establish a theoretical foundation for DAC in emergency situations. The goal of 

creating a DAC aligns with the U.S. Department of Transportation’s goal of creating Intelligent 

Transport Systems (ITS) that have improved efficiency, safety, and operational capabilities.  

 

2.1 EMERGENCY EVACUATION OVERVIEW 

2.1.1 Definition of Emergencies 

The U.S. Federal Emergency Management Agency (FEMA) defines the term emergency as 

“any incident, whether natural, technological or human caused, that necessitates responsive 

action to protect life or property " (Federal Emergency Management Agency & United States 

Department of Homeland Security, 2022). Certain types of emergencies necessitate evacuation, 

“the organized, phased and supervised withdrawal, dispersal or removal of civilians from 

dangerous or potentially dangerous areas, and their reception and care in safe areas” (Federal 

Emergency Management Agency & United States Department of Homeland Security, 2022). 

Closely related to the term “emergency” is the term “disaster.” Since there is no universally 

accepted definition, the terms “disaster” and “emergency” are sometimes used interchangeably. 

However, disasters typically cause injury or loss of life on a larger scale. A disaster is usually 

dealt with under a state of emergency and can require evacuation (Shaluf, Ahmadun, & Mat 

Said, 2003).  

 

Ground and air transportation play vital roles in emergency management since the 

transportation systems can be the cause of the emergency and/or be used to alleviate the 

impacts of an emergency, for example through disaster relief and evacuation efforts. Ground 

transportation can be considered as any form of transport that occurs through the mode of water 
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and land transportation. Air transportation is any form of transport that is performed through 

the air, for example by commercial aircraft or rescue helicopters. While the focus of this work 

lies on the response to emergencies through air transportation, emergency ground 

transportation is recognized as a well-researched field and is therefore used as an additional 

reference. 

 

2.1.2  Causes of Emergencies  

Emergencies can be caused by numerous and a diverse set of factors. Shaluf et al.  (2003) state 

that disasters are often caused by “accumulated unnoticed events.” The authors differentiate 

five disaster-type events:  

1. Conflict type situation ‘Political Crisis’ – These events can be caused by factors 

such as war, embargoes, internal conflicts, hostile takeovers, and terrorist attacks.  

2. Non-conflict type situation – Examples of this event are financial crisis, sabotage, 

poor or faulty training, and loss of proprietary information.  

3. Socio technical [human caused] disasters – This category is named by the FEMA 

as a common cause for emergencies. The FEMA names nuclear explosions or 

cyberattacks as examples (Federal Emergency Management Agency & United 

States Department of Homeland Security, 2022). 

4. Natural disasters – Along with human caused disasters, natural disasters are named 

by the FEMA as a common cause for emergencies. The FEMA lists numerous 

hazards including natural events such as hurricanes, thunderstorms, earthquakes, 

tsunamis, and volcanic eruptions (Federal Emergency Management Agency, 2020). 

Scientific advancements allow for prediction of potential natural disasters with 

varying lead time and accuracy. Depending on the type of event and lead time, pre-

event warnings allow individuals to seek shelter or evacuate (National Research 

Council, 1991). 

5. Transportation accidents – These events impact the transportation system but do not 

have an immediate emergency-type impact on the community.  
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All of these disaster-type events can result in situations that need to be dealt with under a state 

of emergency. There is ample precedent that shows the different roles that civilian or military 

airspace users, as well as the airspace system itself, can play in these situations:  

a. Airspace users and/or the airspace system cause the situation. Boeing  (2022) counts 

307 commercial jet airplane accidents worldwide between 2012 and 2021. Many of 

these accidents occur while operating on ground and do not result and any fatalities. 

However, these accidents may result in temporary airport and/or airspace capacity 

reduction through closed runways, taxiways, or gates.  

b. Airspace users and/or the airspace system are impacted by the situation. The NAS 

and its users frequently deal with severe weather and other events that can impact air 

traffic routes. The FAA issues the National Playbook, a collection of Sever Weather 

Avoidance Plan (SWAP) routes for common scenarios, including non-weather 

events such as military operations (Department of Transportation, 2021). In addition 

to this, events ranging from volcanic eruptions  (Eyjafjallajokull's global 

fallout.2010) to armed conflicts (Kuipers, Verolme, & Muller, 2020) can impact 

routes, airports, and other parties involved. 

c. Airspace users and/or the airspace system are needed for evacuation or relief, for 

example during the evacuation efforts in Afghanistan in 2021  (Sune, Donati, & 

Youssef, 2021) or after natural disasters  (Royal Aeronautical Society, 2006). With 

sufficient lead time prior to natural disasters, airlines may decide to move aircraft to 

other locations  (Seet, 2022). 

 

2.1.3  Emergency Response Plans 

Emergency response plans are part of the Emergency Response Management (ERM) systems 

commonly used in transportation emergency practices. An emergency plan can be described 

as an official document that establishes the policies and procedures to be followed during 

unexpected incidents with the objective of preventing fatalities, injuries, as well as property 

and environmental damage. The International Civil Aviation Organization (ICAO) 

recommends [air navigation] service providers to “establish and maintain an emergency 

response plan for accidents and incidents.” Service providers shall also ensure that the 
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emergency plan is properly coordinated with the organizations involved (ICAO, 2016). 

Furthermore, ICAO recommends operators of aerodromes (ICAO, 2004) and heliports  (ICAO, 

2013) establish an emergency plan for the coordination of actions taken in an emergency. 

These emergency plans include frameworks on how to communicate with other agencies. 

 

In addition to emergency response plans, ICAO asks its members to establish contingency 

plans for the event of disruptions of air traffic services and related supporting services to 

preserve availability of major world air routes. Contingency plans make provisions for 

temporary disruptions of primary [air navigation] services and facilities (ICAO, 2001). 

Considering the complex structure of the NAS and DAC, an in-built emergency response plan 

as well as a contingency plan should be considered in its model. This would provide a 

streamlined process for controllers and the organization to follow that is comprehensive and 

outlines the “specific roles, set of actions, and timeframes to respond to unexpected situations, 

disruptions, or potential disruptions” (International Civil Aviation Organization, 2019). Given 

that DAC offers a dynamically changing airspace by “adapting to user demand while meeting 

changing constraints of weather, traffic congestion and complexity, as well as a highly diverse 

aircraft fleet,”, it is important that controllers and other parties are provided with the necessary 

resources such as emergency plans to sustain their operations safely within the DAC model 

(Kopardekar et al., 2007). Emergency response plans are essential when preparing traffic 

controllers to effectively handle unexpected incidents in a manner that controls the stress of 

the situation while keeping the controllers focused and efficient while diffusing the emergency.  

 

2.1.4 Emergency Operations 

In addition, the following procedures as per the U.S Department of Transportation’s Federal 

Highway Administration’s report Best Practices in Emergency Transportation Operations 

Preparedness and Response could also be considered in DAC emergency situations (Houston 

& Hamilton, 2006). These practices include:  

● Virtual Emergency Operations Center – According to the U.S FEMA, an Emergency 

Operations Center (EOC) is described as “a [physical, virtual or hybrid] location from 

which leaders of a jurisdiction or organization coordinate information and resources to 
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support incident management activities” (FEMA, 2022). EOCs aim to gather highly 

trained experts who have access to state-of-the art technology that enables them to 

mitigate an emergency and reduce potential adverse effects of its outcome. With respect 

to DAC, EOCs can potentially be used to coordinate and establish the immediate actions 

followed during an emergency within DAC sectors. According to Kopardekar et al. 

(2007), the current static structure of airspace has three main limitations one of which is 

controller workload limitations which reduces the efficiency of air traffic management 

and airspace usage. Due to the stressful nature of emergencies, air traffic controllers can 

easily become overwhelmed, thus such incidents are examples of events that contribute 

to controller workload limitations. EOCs would provide an organized and proficient 

manner of dealing with emergencies without overwhelming air traffic controllers 

managing the affected sectors. They would also contribute to the dynamic and adaptable 

structure that DACs provide in improving airspace practices and management. An 

example of how EOCs can do this is by having protocols that immediately redirect non-

emergency aircraft to other sectors, hence allowing controllers to focus specifically on 

a distressed aircraft. This eradicates the potential danger of distressed aircraft affecting 

other aircraft in the sector while ensuring that controllers are not overwhelmed and 

reducing human error which could potentially worsen the situation. Finally, an added 

benefit of virtual EOCs is that multiples of them that are not collocated can be set up, 

which allows for and increases the coordinated efforts of emergency services.  

● EOC Monitoring of Radio Transmissions – Once an EOC is activated, it monitors radio 

transmissions between entities involved in attending to an emergency. It is important 

that the reception of the transmissions is strong and clear to avoid any 

miscommunication or actions that could further increase the severity of the emergency. 

This ensures that the EOC is constantly updated on the progress of events during an 

emergent event. Given that there are multiple attributes that change without notice when 

carrying out operations, monitoring radio transmissions during emergencies maintains 

a cohesive emergency response effort among those involved in mitigating the 

emergency and restoring normal operational conditions.  
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● Transfer of Dispatching Functions – When an EOC is activated, emergency services 

dispatch is transferred to the EOC for close coordination. In DAC, airport operators and 

other relevant entities can be included in a sector’s allocated EOC to keep them involved 

while they liaise with emergency response teams. This ensures that the necessary entities 

required to mitigate the outcome of the emergency are involved and if ground 

emergency services are required, the necessary personnel can be dispatched.  

● Incident Response Protocols – A set of procedures can be determined beforehand and 

activated in the event of an emergency. This ensures organization, accountability, and 

smooth running of the emergency efforts applied to diffuse the emergency and its 

outcomes. 

Many of the practices listed above are already part of day-to-day NAS operations. Others are 

considered in plans, such as the Airport Emergency Plans or Operational Contingency Plans. 

For example, airports are asked to set up emergency plans in which an EOC typically plays a 

central role in coordinating the emergency with ATC and other affected parties  (Department 

of Transportation, 2010). Emergencies handled through airport EOCs can occur at airports 

(e.g., emergency landing) or can have their origin outside of the airport but affect airport 

operations (e.g., natural disasters). In addition to Airport Emergency Plans, there are pre-

coordinated Operational Contingency Plans to ensure continuation of services when an ATC 

facility is temporarily unable to perform all or some of its tasks. Contingency measures include 

temporary transfer of responsibilities to other facilities and communication to airspace users 

through Notice to Air Missions (NOTAMs)   (Department of Transportation, 2020). It is worth 

mentioning that an airspace that uses DAC needs to incorporate failure of DAC system 

components into contingency plans.  

 

A commonly used tool for air traffic related emergency management in the NAS are 

Temporary Flight Restrictions (TFR). In case of a disaster, hazard, or special event, a TFR can 

be issued by the FAA to protect persons or property on the ground or in the air. TFR can also 

be used to create a safe environment for disaster relief operations. Examples of scenarios that 
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may warrant the use of TFR include volcanic eruptions, nuclear accidents, hijackings, and the 

need for relief activities after earthquakes, floods, or other disasters. TFR are implemented 

through NOTAMs  (Department of Transportation, 2021). 

 

While there are well established emergency procedures for traffic management and at airports 

and other facilities in the NAS, emergency situations are often accompanied by a sudden 

change of air traffic patterns. DAC can make emergency management more efficient and 

effective by dynamically adjusting the airspace and airspace management, thus equally 

balancing workload across available resources, so that bottlenecks are reduced.   

 

2.1.5 Application of Ground Transportation Emergency and Safety Procedures in 

DAC 

To the best of our knowledge, there is little research or publicly available knowledge on 

handling emergency situations involving air traffic systems. This concerns all three possible 

emergency situations described above (i.e., airspace users and/or the airspace system cause the 

situation, airspace users and/or the airspace system are impacted by the situation, and airspace 

users and/or the airspace system are needed for evacuation or relief). Examples include rapidly 

changing traffic patterns, sudden change of airspace user demand on certain routes, and best 

practices for rerouting airspace users to avoid disaster zones. However, comparable emergency 

situations have been thoroughly researched for ground transportation systems. Common 

characteristics between air transportation emergencies and ground transportation emergencies 

are the temporary loss of infrastructure, such as roads, traffic lights, ATC services, and 

runways, due to accidents or disasters. Often, traffic needs to be guided around the 

disaster/accident zone, which is done by blocking roads or by issuing TFR. Furthermore, both 

air and ground transportation are critical in evacuation, rescue, and relief efforts in the event 

of a major disaster, such as hurricanes. Due to the lack of information about handling air 

transportation emergencies, research on ground transportation emergencies is evaluated in this 

chapter to assess if knowledge on handling ground transportation emergencies can be 

transferred to air transportation systems. 
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Road transportation is known to have the highest number of incidents in comparison to other 

ground transportation systems, as well as water and air transportation. Most of these incidents 

tend to be fatal; hence, there is a global effort to try and find a way to manage and improve 

road infrastructure and practices. Some of the shared characteristics of ground transportation 

emergencies include: 

▪ Fatalities 

▪ Fire explosions 

▪ Severe wreckage of the vehicle or vessel 

▪ Collisions with other vehicles, vessels, wildlife, or other environmental factors, such 

as icebergs 

▪ Destruction of the surrounding environment due to impact or elements, such as oil spills 

 

Examples of road transportation emergencies include engine failures, brakes malfunctioning, 

tires blowing out, collision with other vehicles or wildlife, driving off the road or out of a traffic 

lane, hydroplaning due to severe weather, and failure of brakes among other instances that lead 

to accidents that are severe and are likely fatal. Examples of maritime emergencies include 

damage to the vessel’s structure due to severe weather, icebergs, reefs, docks, etc.; on board 

fires; siege by pirates; and active shooters among many other situations.  

 

According to the Occupational Safety and Health Administration (OSHA), a workplace 

emergency is described as “a situation that threatens workers, customers, or the public; disrupts 

or shuts down operations; or causes physical or environmental damage” (Occupational Safety 

and Health Administration, 2018). As discussed in the previous sections, emergencies can be 

caused by a myriad of things. The priority in the event of an emergency or accident is to 

minimize the impact of the incident while protecting those involved. It is therefore important 

to ensure that there are contingencies in place to deal with emergencies prior to their occurrence. 

This section examines some of the AI applications followed in ground transportation, 

particularly road transportation, when responding to emergencies that could potentially be 

applied to DAC emergency protocols.  
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The application of AI in transportation revolutionizes the sector by providing a superior way 

to improve current transport systems in terms of safety, efficiency, and sustainability. Recent 

studies have been carried out to test the application and viability of AI in transportation. 

According to the World Health Organization (WHO), “road traffic injuries are the leading 

causes of death for children and young adults aged 5-29 years” and lead to approximately 1.3 

million deaths annually (World Health Organization, 2022). As a result, there is a worldwide 

push for solutions that provide safer roads and systems that reduce deaths or injuries caused 

by road accidents (Bibi et al., 2021). In a bid to find efficient and long-lasting solutions to this 

issue, AI is at the forefront of some of the methods being proposed to reduce road traffic 

incidents as well as improve the road emergency response practices. Currently, the major AI 

algorithms being investigated, such as Artificial Neural Networks (ANN), Decision Trees (DT), 

and Support Vector Machines (SVM), have been applied to different fields, such as computer 

vision. These techniques are being used to determine Crash Prediction Models (CPM) 

(Caliendo, Guida, & Parisi, 2007), which provide information on factors that promote Road 

Traffic Accidents (RTA) and the appropriate emergency response actions required to deal with 

them as well as possibly prevent them. This segment will discuss the application of these 

algorithms in road emergency response and their use in improving road safety through traffic 

management and how these applications can similarly be used in DAC. 

 

ANN which are commonly referred to as Neural Networks (NN) (Bishop, 1994) are algorithms 

that have been inspired by and mimic the complex biological operations of the human brain. 

Just like the human brain, their architecture consists of a network of nodes and layers whose 

goal is to work together to recognize patterns, which are used to solve a myriad of problems 

related to AI. What makes ANN unique when trying to build crash prediction models that 

highlight factors leading to RTAs is that they do not “require any pre-defined underlying 

relationship between dependent and independent variables,” thus making it a powerful tool in 

prediction and classification problems which make up most of these models (Chang, 2005). 

According to Chang, ANN offer a great and better means of analyzing the frequency of 

accidents on freeways in comparison to traditional models, such as negative binomial 

regression that has commonly been used in the past (Chang, 2005). Chang uses the two models 
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to investigate non-behavioral risk factors, such as environmental conditions that play an 

important role in traffic safety and contribute to freeway accidents. The nonlinearity between 

variables in ANN increases the algorithm’s robustness when creating prediction and 

interpretable models that are not limited to sensitivity and result fluctuance when variables 

change. This is particularly beneficial in CPM because “an accident is rarely due to a single 

risk factor but is rather the outcome of a series of factors” and maintaining the correlation 

between these variables reduces accuracy in the analysis (Chang, 2005). ANN provide an 

alternative and more accurate means to analyze risk factors related to freeway accidents and 

the CPM obtained are used to mitigate the effects of these factors and reduce the occurrence 

of accidents. Although ANN are powerful algorithms, a major disadvantage is that they are 

computationally expensive. Despite this, investigations by Silva et al. show that ANN are at 

the forefront of road CPM that provide information on crash frequency and severity (Silva, 

Andrade, & Ferreira, 2020). These models use several variables, such as road-environmental 

conditions, human factors, vehicle type and age, weather, traffic volume, etc., to determine 

how these factors contribute to the increasing frequency of road accidents and the severity of 

these accidents depending on which factors are present at the time. The information obtained 

from these models is then used to establish road safety conditions and practices that could 

either be enhanced or created as way of reducing road RTA. This analysis compared the 

application of the backpropagation and Levenberg-Macquardt (LM) algorithms (Chauhan, 

Dahiya, & Sharma, 2019) in ANN. Backpropagation is a learning algorithm that trains and 

refines the weights of a NN by computing the gradient descent of the errors from the outputs 

obtained. The LM algorithm is also a neural network training algorithm that works to minimize 

a model’s sum of squared error. The comparison of the two algorithms by Silva et al. revealed 

that the application of the LM algorithm along with the sigmoid function improved the model’s 

convergence, thus confirming the validity of using ANN in CPM. Additionally, with an 

increase in traffic congestion resulting from growth in population and ecommerce, ANN can 

be used to determine driver behavior and detect accidents on freeways, which can be used to 

establish road safety policies and transportation decision tools that relieve congestion and 

traffic incidents (Liu & Shetty, 2021).  
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ANN can be applied in DAC through Trajectory Based Operations (TBO), which is an “air 

traffic management concept that enhances strategic planning of aircraft flows to reduce 

capacity-to-demand imbalances in the National Airspace System (NAS)” (Federal Aviation 

Administration, 2020). ANN can be used to create prediction models that analyze the capacity-

to-demand features of air traffic sectors based on aircraft trajectories and air traffic in real time. 

It is important to note that “actual aircraft trajectories are modified by air traffic control 

depending on potential conflicts with other traffic” (Gallego et al., 2019). Given that aircraft 

trajectories are not fixed and continuously change due to unrelated external factors, such as 

weather, traffic conflict, unexpected emergencies, etc., creating models that account for these 

factors as a proactive measure helps to decrease negative effects, such as traffic congestion and 

potential accidents. This type of model could increase the effectiveness of a dynamic airspace 

being able to support changes that affect traffic flow and air traffic management, which are 

major components to the DAC problem. Finally, given that DAC is comprised of time varying 

features, ANN could be used to apply spatio-temporal graphs that use data from the Automatic 

Dependent Surveillance – Broadcast  (ADS-B) and flight tracking data to determine aircraft 

trajectories (Han, Wang, Shi, & Yue, 2021), effects of changes to the trajectories (Kumar, 

Corrado, Puranik, & Mavris, 2021), and outcomes from changes in the trajectories. This would 

provide insight on how to improve DAC sector operations during regular operations and 

emergencies, which is what our model investigates.   

 

In addition, DT are a form of supervised machine learning algorithm that makes use of 

ensemble learning to perform classification and regression tasks (Myles, Feudale, Liu, Woody, 

& Brown, 2004). The goal of DT is to discover and extract patterns from a given database that 

can be used to classify and make predictions based on an expected or known output. When 

looking at their application in ground transportation emergency response and procedures, DT 

have been widely used to analyze and improve road safety infrastructure as well as practices 

during road emergencies. DT in the form of random forests can be used to predict road accident 

severity with a 94% prediction accuracy (Shanmugam, Raheem, & Batcha, 2021). Road 

accident severity is essential in determining how external factors, such as environment, 

contribute to the severity of an accident. This is important information when deciding how to 
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improve infrastructure that promotes road safety and reduces casualties or fatalities resulting 

from accidents. DT are also used to establish road departure crash mitigation solutions, such 

as Lane Support Systems (LSS). A road departure crash is one that occurs when a vehicle is 

operated outside of the edges of a traffic lane, and it is one of the most common causes of road 

traffic accidents. According to Pappalardo et al., LSS is an automated in-built vehicle system 

that uses cameras to detect lane marking and alerts drivers when the vehicle is too close to the 

markings or when it is outside of those markings (Pappalardo, Cafiso, Di Graziano, & Severino, 

2021). LSS are a form of road technology that helps reduce accidents while improving 

motorist’s driving behavior and safety. Pappalardo et al., created a predictive model using DT 

to determine the probability of the absence or presence of faults in LSS based on selected 

independent variables, such as horizontal curvature of the road, average speed of the vehicle, 

and the marking coefficient  (Pappalardo et al., 2021). The results from this model were used 

to refine LSS, which is part of the effort behind ITS. DT can be similarly applied in DAC to 

predict sector saturation based on operational conditions and the expected emergency outcome 

centered on the present conditions. For example, if a sector is in a mountainous region that 

tends to have poor visibility, DT can be used to classify the expected emergency outcomes 

correlated to these conditions. This data can be used to train a DAC model to provide 

predictions of which sectors would be affected based on current weather reports. The 

information obtained could then be used to reroute traffic scheduled to be in the affected sectors. 

This improves the efficiency of the controllers overseeing those sectors, reduces delays, and 

decreases the potential of aircraft accidents in the affected sectors. Furthermore, to 

accommodate the fact that research in DAC is still ongoing and there are limited resources in 

its functionality, we propose combining an ensemble of DT with a 3D graph-based 

optimization that caters to spatio-temporal consistency and automatically creates segments of 

sectors that do not meet the base operational requirements of a sector that could be established 

by a governing body, such as the FAA. These segments would then be passed through a model 

that identifies the factors that disqualify them from meeting the base operational requirements 

and provide mitigating solutions to alleviate the situation and restore smooth operation.  
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Moreover, another algorithm used in road transportation traffic management and emergency 

response is SVM. SVM is a linear ML model that is supervised and used to perform 

classification and regression problems (Hearst, Dumais, Osuna, Platt, & Scholkopf, 1998). 

SVM is a discriminative classification algorithm that can learn either the linear or non-linear 

decision boundaries in the attribute space which it uses to separate the classes. It is 

discriminative because it is impacted only by the training instances near the boundaries of the 

classes. It also does not require any assumptions of the data distribution. SVM has been applied 

to predict crash injury severity of road accidents. A study carried out by Assi et al. to predict 

the gravity of traffic injuries in correlation to the severity of an accident combined SVM with 

the Fuzzy-C Means (FCM) technique uses cluster analysis to subdivide a dataset into two or 

more clusters and each cluster is considered a fuzzy set and is assigned a membership grade 

by each training vector that is measured by a membership function (Assi, Rahman, Mansoor, 

& Ratrout, 2020). The parameters considered in this study included vehicle attributes (e.g., 

model of the car, age, speed range, etc.) and road attributes (e.g., sharp bends, blind spots, 

potholes, pedestrian crossings, etc.). Carrying out this analysis provided insight on traffic 

management strategies, such as speed limits, road architecture, speed bumps, and speeding 

cameras, that could be improved to reduce the severity of accidents and the resulting injuries. 

Streamlining these elements of traffic management contributes to improving road safety 

procedures which when optimize decrease RTA. Additionally, SVM can be used to predict 

fatalities resulting from a road incident. Gu et al. apply SVM and use non-linear data to predict 

traffic fatalities (Gu et al., 2018). They also refine the model’s prediction accuracy based on 

parameter optimization through the introduction of particle swarm optimization, which finds 

the optimal parameters for the model  (Gu et al., 2018). This approach and use of SVM can be 

used to optimize the prediction parameters used in DAC to determine the severity of sector 

traffic saturation under different conditions.  

 

Finally, another way that AI is being applied in transportation is to reduce traffic-related 

fatalities on roads in urban areas through an automated scheme that applies computer vision 

methods (Bustos et al., 2021). The motivation behind the Bustos et al. research and the 

application of computer vision in reducing RTA and fatalities is the fact that majority of the 
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urban plans in most cities do not account for the safety of pedestrians, yet they are the most 

exposed and vulnerable to road risks than any of the road users at any given time (Bustos et 

al., 2021). The use of computer vision in managing RTA introduces a modern solution to 

decreasing the number of car accidents and fatalities that happen annually through road 

transportation. This is achieved through the “adaptation and training of a Residual 

Convolutional Neural Network to determine a hazard index for each given urban scene, as well 

as interpretability analysis based on image segmentations and class activation mapping on 

those same images” (Bustos et al., 2021). This method of AI application provides an avenue 

to digitally map hazardous regions within urban areas that promote road accidents. This 

information can be used to improve urban plans that create road networks that are safer and 

easy to improve digitally as urban areas evolve. This technique can be applied to DAC, which 

is dynamic and constantly changing, by applying it to map sectors and provide information on 

airspace regions that are prone to emergencies due to factors such as terrain, weather, traffic, 

etc.  

 

2.2 Dynamic Airspace Configuration (DAC) Overview 

2.2.1 Airspace Capacity Management and Airspace Structures 

Airspace capacity is determined by Air Traffic controller workload  (Lee et al., 2008). In both 

the U.S. NAS and in the European airspace, controlled airspace sectors can be combined with 

others or split into smaller controlled airspace sectors to balance the workload equally across 

available ATC resources and sectors  (Zelinski & Chok, 2011).  

 

A controlled airspace sector is operated by a small team of controllers  (Gianazza, 2010; Lee 

et al., 2008). A controlled airspace sector is comprised of one or more airspace modules. These 

airspace modules are usually referred to as sectors. To avoid confusion with the term 

‘controlled airspace sector,’ we adapt the naming convention from Gianazza (2010) and refer 

to an individual sector as ‘airspace module.’ We refer to a set of one or more airspace modules 

that are controlled by one team of controllers as ‘controlled airspace sector.’  
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It is important to note that Air Traffic controllers need training to work on a specific set of 

airspace modules. Controllers are trained in certain regions or areas of specialization which are 

usually comprised of groups of airspace modules (Zelinski & Chok, 2011).  

 

Airspace configuration describes the partitioning of controlled airspace sectors (Gianazza, 

2010). Configuration schedules are generated days in advance (Zelinski & Chok, 2011) to 

outline the planned airspace configuration and triggers to changes of the configuration prior to 

operations (Lee et al., 2008). During operations, ATC managers may decide to tactically 

change the pre-planned airspace configuration to better balance the workload across controlled 

airspace sectors (Gianazza, 2010).  

 

Since tactical changes to the airspace configuration schedules are taken by ATC managers, 

these changes depend on the manager’s individual experience (Kopardekar, Bilimor, & Sridhar, 

2007). In addition to this, these configurations are based on estimated and not actual demand 

(Gianazza, 2010). Researchers and practitioners call for “more fluid and dynamic airspace 

structures that are able to accommodate changes in both traffic and user demands” (Lee et al., 

2008). 

 

2.2.2 Introduction to Dynamic Airspace Configuration 

DAC is an operational paradigm in which the boundaries of controlled airspace sectors are 

dynamically reconfigured to meet the airspace user demand and increase available airspace 

capacity limits (Zelinski & Chok, 2011). The partitioning of controlled airspace sectors and 

the ATC resource allocation to these controlled airspace sectors is changed with the goal of 

equally balancing the workload across available Air Traffic Controllers (Gianazza, 2010). 

Doing so enables ANSPs to better accommodate user-preferred trajectories, i.e., trajectories 

that take prevailing weather patterns and other security and environmental constraints into 

account (Kopardekar et al., 2007).  
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There are three major components to DAC: the overall organization of the airspace, 

dynamically adapting airspace to meet airspace user demand, and a generic airspace design 

(Lee et al., 2008).  

 

First, restructuring today’s airspace may be necessary to build a solid foundation to 

dynamically adapting airspace. Many of today’s airspace structures are based on historical use 

profiles and may not be ideal for today’s demand pattern (Lee et al., 2008). Furthermore, the 

widespread availability of technologies, such as GPS and ADS-B, creates possibilities that may 

require changes to the airspace structure (Kopardekar et al., 2007). Other approaches to DAC 

require changes in the way that ATC works with airspace module boundaries  (Klein, Rodgers, 

& Kaing, 2008).  

 

The second part of DAC is the dynamic adaptation of airspace on a tactical level to reduce 

demand and capacity imbalances. Researchers differentiate two approaches  (Zelinski & Chok, 

2011). The first of these approaches is dynamically creating entirely new controlled airspace 

sectors for every period. Controlled airspace sector boundaries are newly created every time 

without relying on pre-existing structures. This approach is sometimes also referred to as 

dynamic sectorization. This is not desirable from an ATC perspective since ATC personnel 

cannot familiarize themselves with the airspace  (Sergeeva, Delahaye, Mancel, & 

Vidosavljevic, 2017). The second and more desirable approach from an operational perspective 

is to use existing building blocks (e.g., airspace modules) which can be dynamically combined 

to form a controlled airspace sector  (Sergeeva et al., 2017).  

 

Third, a generic design of the airspace would promote interchangeability between facilities so 

that more controllers can manage different airspaces (Lee et al., 2008). However, it is important 

to point out that the airspace also consists of highly complex and congested airspaces, such as 

the New York Center for which interchangeability is considered unrealistic and impractical 

(Kopardekar et al., 2007).  
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Taking all three parts together, the concept of DAC offers promising approaches to maximize 

throughput by flexibly adjusting airspace configurations to weather and other constantly 

evolving constraints. The remainder of this review focuses on the second part of DAC, i.e., 

approaches and algorithms to dynamically adjust airspace configuration.  

 

2.2.3 A Review of Promising Experimental Studies and Simulations  

To better meet the dynamic traffic demand in airspace management, one approach is to redraw 

airspace module boundaries at every time step, known as dynamic sectorization. However, this 

approach has operational drawbacks due to safety requirements and the limited time for air 

traffic controllers to familiarize themselves with new airspace configurations. Therefore, this 

section will focus on approaches that utilize fixed airspace modules as building blocks. In 

particular, we will review two previous research frameworks that represent different 

approaches to solving the DAC problem. These approaches have shown promising results and 

are worth exploring further. By using fixed airspace modules, these frameworks provide a 

stable foundation for air traffic controllers to work with, thus avoiding the safety risks 

associated with constantly changing airspace configurations. 

 

2.2.3.1 Forecasting workload and airspace configuration with neural networks and 

tree search methods   (Gianazza, 2010) 

 
Figure 1: Flowchart of Gianazza’s model (Gianazza, 2010) 
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Series research have been done by David Gianazza with a focus of improving airspace 

configuration. In  their work, a promising framework is proposed to realize DAC. Here is the 

brief idea introduced in their research, the flowchart is shown in Figure 1: First the flight radar 

track and sector operation history are used as input data. Then some metrics are extracted from 

the raw data and feed into a neural network shown in the feature selection section. The neural 

network is trained to provides a workload indication for the air traffic control sector, whether 

the workload in this sector is high, normal, or low. With this prediction, the algorithm generates 

different new configurations by splitting sectors into several smaller airspace modules when 

the workload is high or merged with other sectors when the workload is low. Next, the tree 

search methods explore all possible partitions, while restricting them to being operationally 

valid. They make sure the algorithm will build an optimal airspace partition where the 

workload is balanced across the sectors and use the restrictions to lower the reconfiguration 

cost. 

 

2.2.3.1.1 Data Source 

Data used to conduct experiments are sampled from five French air traffic control centers on 

June 2, 2003. The radar tracks of the traffic and sector opening archives are recorded as raw 

data. The metrics used for training the model are then computed based on the recorded flight 

trajectories and sector geometry very minute of that day. The labels are in one hot encoding 

form, where:  

● 𝑑𝑑 = (1,0,0)𝑇𝑇stands for low workload where sector needs to be merged, 

● 𝑑𝑑 = (0,1,0)𝑇𝑇stands for normal workload where no change needs to be made, 

● 𝑑𝑑 = (0,0,1)𝑇𝑇stands for high workload where sector needs to be split. 

Later when the model is used to predict future workload, instead of real-time data, flight 

plans are used to simulate flight trajectories, which are then used as raw data to calculate the 

features. The bias of simulated data and real data are discussed in the Results and Discussion 

section. 
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2.2.3.1.2      Feature Selection 

In the previous publication (Gianazza & Guittet, 2006), they explained the details about how 

they selected the most relevance features to predict air traffic controllers’ workload. A 

dependent variable is selected to represent their workload, and the model needs to be trained 

in order to maximize the correlation of the selected metrics with that dependent variable. An 

assumption made here is that splitting and merging history of an ATC sector can represent the 

controllers’ workload, because sectors will be splitting into smaller sectors when the 

controllers’ workload is too heavy or merged when it is too light. Another advantage of sector 

opening history is that it is stored in air traffic control centers, which does not require extra 

experiments to collect data. Thus, the sector status is the dependent variable, which belongs to 

either merge, split, or normal.  

 

To select metrics from 28 candidates, principal component analysis is conducted to reduce the 

feature dimension and AIC is used to select the most relevant components. Next, Bayesian 

Information Criterion (BIC) (Neath & Cavanaugh, 2012) is used to find the best metrics in 

each relevant component. As a result, the following 6 metrics are chosen: 

● Sector volume V  

● Number of aircraft within the sector Nb 

● Average vertical speed avg_vs 

● Incoming flows with time horizons of 15 minutes and 60 minutes (F15, F60) 

● Number of potential trajectory crossings with an angle greater than 20 degrees 

(inter_hori18). 

The metrics are smoothed by moving average to avoid too frequent reconfiguration caused by 

high variations. The author mentioned that although these 6 features are relatively basic and 

intuitive, the result shown that they are good enough for this task. A possible explanation for 

this is that our labels are not fine-grained, which only have three class. More sophisticated 

metrics are needed to capture small variations in the workload. 
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2.2.3.1.3 Model Definition 

As shown in Figure 1, the main component of the Gianazza model is the neural network, which 

is used to predict the air traffic controllers’ workload and used as an indicator to change the 

sector status, and the tree search model to find the best reconfiguration. 

 

The neural network has a basic architecture of 3 layers: an input layer with 6 units to input 6 

features, one single hidden layer with 15 units and an output layer with 3 units representing 3 

classes. The output layer has the Softmax activation function (Gao, Liu, & Lombardi, 2020), 

the output can be considered as the posterior probabilities of each class, where 𝑦𝑦 =

(𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙,𝑃𝑃𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛,𝑃𝑃ℎ𝑖𝑖𝑖𝑖ℎ)𝑇𝑇 and the sum of 𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙,𝑃𝑃𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛,𝑃𝑃ℎ𝑖𝑖𝑖𝑖ℎ is 1. 

 

Those workload prediction are then input into the tree search algorithm, which would explore 

all possible configurations and find the best one according to a cost function. The cost function 

is used to evaluate each configuration and consider the number of sectors and the workload 

probabilities as the main criteria. The tree is built from the root node. Each tree node is a list 

of couples. The first element of the couple is the sectors combined, and the second is the list 

of valid sectors of that combination but without sectors in other couples. When expending to 

the next level, adding a new sector into different couples leads to a new branch. In order to 

improve the search efficiency, they proposed an algorithm called “Branch & Bound.” The 

improvement of it, compared to exhaustive tree search, is that the lowest cost of all leaves 

developed from this node is compared to the best cost so far. When it is higher than the best 

cost then this whole branch will be deleted.  

 

When combining the two models together, the algorithm is iterated as below: 
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Figure 2: Sudo code of the Gianazza’s algorithm (Gianazza, 2010) 

2.2.3.1.4 Results 

The neural network has an overall accuracy of 85%, where 90% for class merge, 68% for class 

normal and 93% for class split. Overfitting is not likely since the model is not complex and the 

test results are consistent with the training result. 

 

Experiments were conducted to test its performance. To assess the performance, the predicted 

configurations are compared to the real ones. There are two measures used to quantify the 

difference, which are the dissimilarity of the number of sectors between them and the number 

of configuration changes. First, the model is trained on the sampled data on June 2nd and tested 

on June 6th and 7th. The result shows that the dissimilarity of number of sectors ae 0.191 on 6th 

and 0.115 on 7th, which is pretty close to the reality. The number of configuration change is 

above reality, which has 46 against 33 on 6th and 37 against 33 on 7th. Next the model is tested 

on the trajectories data simulated from flight plans. Compared to the predicted configuration 

made by flow management operators, the model outputs are more realistic. The dissimilarity 

between the model outputs and reality is 0.137, and 0.568 for the flow management operators’ 

prediction on June 7th. 

To improve this work, future work can focus on the following points: 

● Use real-time sector volume as input data instead of the estimated traffic made from 

flight plan. Because the real sector volume can be affected by a lot of factors, such as 

weather and military activities, which are unseen during estimation but in fact have a 
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considerable influence. Attempts of mixing radar tracks with simulated trajectories 

may help reduce the bias to improve model accuracy. 

● Consider the temporal correlation of the data by input the data as a time series and use 

more complexed model to make the prediction, promising candidates are RNN 

(Zaremba, Sutskever, & Vinyals, 2014) and LSTM (Sherstinsky, 2020). 

 

2.2.3.2      Dynamic airspace configuration by genetic algorithm (Sergeeva et al., 

2017) 

In collaboration with the EU and Eurocontrol, researchers  (Sergeeva et al., 2017) proposed to 

model dynamic airspace configuration as a graph partitioning problem that can be optimized 

with a genetic algorithm. The authors define two different types of airspace modules. Those 

airspace modules that “are permanently busy areas with a high traffic load” are designated to 

be “Sector Building Blocks” (SBBs). Less busy and more generic airspace modules are called 

“Sharable Airspace Modules” (SAMs). A controlled airspace sector should consist of at least 

one SBB and multiple SAMs. Instead of incorporating re-configuration into the cost function, 

this approach ensures stability of the configuration by making the busiest airspace modules 

(SBBs) a fixed central component of each controlled airspace sector. Only the generic SAMs 

change from one configuration to the next. The approach works best when the airspace is 

divided into relatively small SAMs and SBBs. However, results better than the current system 

can also be obtained without introducing SAMs but by using existing airspace module 

boundaries and treating those relatively large airspace modules as SBBs.  

 

2.2.3.2.1 Data Source 

The approach has been tested successfully on simulated free route trajectories for the 

Maastricht Area Control Center, which consists of 8 airspace modules. The simulated free 

route trajectories are based on data from July 11, 2014. Two baseline scenarios are compared 

to two solution scenarios built by the algorithm. The first baseline scenario is the actual 

configurations from July 11, 2014. The second baseline scenario is the configurations 

suggested by the tool used to optimize airspace configurations, the Improved Configuration 
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Optimizer (ICO) system tool (Guégain & Quinton, 2022). Scenario 1 builds configurations 

based on the existing 8 airspace modules, each treated as SBB. Scenario 2 is based on newly 

created airspace module boundaries where the Maastricht Area Control Center is divided into 

32 SBBs and SAMs.  

 

2.2.3.2.2 Feature Selection 

The genetic algorithm uses a cost function to minimize the following criteria:  

● Workload imbalance between all controlled sectors: Workload is computed as the 

number of controlled flights per defined timeframe. A maximum occupancy count per 

hour of 360 flights was used in the experiments as target workload.  

● Coordination workload: Count of flights that cross a sector boundary within a specified 

timeframe.  

● Number of re-entry flights: Count of flights that enter a sector more than once. Such 

cases should be avoided because they unnecessarily increase the coordination 

workload.  

● Number short-transit flights: Count of flights that enter a sector for only a short period 

of time.  

● Number of controlled sectors: There is a maximum number of controlled sectors that 

can be opened in each configuration. This number typically depends on the number of 

available controllers.  

The cost function consists of these five criteria. All criteria are normalized to values between 

0 and 1. They are then multiplied by proportion coefficients to control each criterion’s 

individual importance to the overall cost. Furthermore, the following constraints must be 

fulfilled, whereas the last two constraints are soft ones:  

● All airspace modules in a controlled sector must be connected.  

● There should be continuity between resulting configurations. 

● Shapes of sectors (in a lateral view) such as “stairs” or “balconies” should be restricted. 



 

 

Application of AI in the Optimization of Mobility in DAC During Emergency Situations 25 

 

2.2.3.2.3 Model Overview 

The three-dimensional airspace is modeled as a weighted graph in which each node is an 

airspace module, i.e., either a SAM or an SBB. The weight of each node represents the 

workload in the respective airspace module. The link to other nodes represents the coordination 

workload between two adjacent airspace modules.  

 

Since this is an NP hard combinatorial problem, a genetic algorithm is used. While such 

approaches do not guarantee the correct solution, they have proven to find approximate 

solutions within a reasonable time. The used genetic algorithm starts with a randomly 

generated initial population, i.e., several first guesses for a possible solution. A random set of 

individuals from the first population is picked from which a few best solutions are selected. 

Then, three possible operators are applied to the individuals of this population: nothing to carry 

over the same solution to the next generation, crossover, and mutation. Crossover combines 

the solution of two individuals. Mutation is applied to avoid local minima. The results from 

these three operations form the next generation. These steps are typically repeated for a pre-

defined number of iterations or until another termination condition has been reached.  

 

A possible solution in the genetic algorithm (Whitley, 1994) used for airspace configuration 

consists of two layers. In the first layer, the number of controlled sectors and their root nodes 

is defined. After every iteration, this first layer is altered through crossover and mutation 

operations. Based on this first layer, the second layer uses graph partitioning techniques to 

allocate all other nodes (SBBs that are not root nodes and SAMs) to one of the root nodes. A 

special mutation operator is used for the second layer in which the algorithm starts with the 

worst performing sector (either overload or underload). The algorithm then swaps airspace 

modules of adjacent airspace sectors to balance their workload.  

 

2.2.3.2.4 Results 

The simulated free route trajectories based on Maastricht Area Control Center traffic data from 

July 11, 2014, are used to compare two scenarios to two baseline scenarios. The first baseline 
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scenario is the actual configuration used on July 11, 2014. The second baseline scenario is the 

configuration suggested by the existing tool used for airspace configuration. Scenario 1 uses 

existing airspace module boundaries. Since the airspace modules are rather large, all of them 

treated as SBB. Scenario 2 produces a configuration based on a further division of the airspace 

into 32 SAMs and SBBs located on two altitude layers.  

 

Both solution scenarios show significant improvements compared to the baseline scenarios. 

Since the quality of workload balancing depends on the number of input modules, scenario 2 

produces solutions that are much better balanced in terms of the workload than scenario 1. 

However, scenario 2 results in solutions that have undesirable geometric shapes like 

“balconies”. Despite this, the authors claim that operational experts have found these solutions 

to be acceptable. Improving the algorithm to find solutions that are characterized by a more 

ideal geometric shape could be the focus of future work. In addition to this, the authors identify 

a more advanced workload metric as a possibility for further improvement.  

 

2.2.4 Summary of literature review 

Although various research has been conducted to implement DAC, many of these methods 

redraw the boundaries of airspace modules frequently, which is not operationally desirable due 

to the high collaboration cost. An approach that uses fixed airspace modules as building blocks 

and generates new configurations by combining or splitting these blocks into groups is 

preferable. However, there are limited research following this idea and we have reviewed the 

most promising research of them in detail and identified improvements that can leverage the 

benefits of both methods. In summary, we are inspired to combine the two works mentioned 

in section 3.3 together by utilizing both temporal and spatial information. On the one hand, 

Gianazza’s approach in 3.3.1 has shown the ability of neural network to predict the air traffic 

controllers’ workload which is very important when evaluating the quality of a configuration 

and its performance can be further improved if input the features as a time series. On the other 

hand, the research from Sergeeva et al. in 3.3.2 provide us a new idea to include spatial 

information of adjacent sectors into the model by constructing the problem into a graph 
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partition problem. Therefore, we chose the research direction of utilizing both temporal and 

spatial information. 

 

3 PHASE 1: DELAY PREDICTION WITH SPATIAL-TEMPORAL GRAPH 
NEURAL NETWORK 

We used the genetic algorithm to generate all possible partitions and used a spatial-

temporal graph neural network to evaluate the air traffic controllers’ workload and used that 

as the indicator to choose the best configuration. For the first step, we tried to realize the 

spatial-temporal neural network. We assigned the flight delay prediction task to this model as 

the evaluation criteria for the following reasons: first, in the previous research on dynamic 

airspace configuration, choosing the appropriate metrics to evaluate the Air Traffic Controllers 

workload was critical for the model performance. The predicted total flight delay in an ATC 

sector could be then used to evaluate the sector workload and used as an indicator when 

choosing the optimal configuration. Second, once the model was completed, its ability to learn 

the underlying pattern of the spatial-temporal information could be confirmed, and we would 

continue to the next stage. 

 

3.1 Rationale 

The accuracy of the flight delay prediction task is still restricted mainly due to three factors: 

the lack of available flight data, the high diversity of the delay causes, and severe imbalance 

of the delayed flight versus normal flight (Ball et al., 2010). Some of the work feed the data as 

a time series without taking the spatial information into consideration, which prevents the 

model from obtaining higher performance (Wang, Bi, Xie, & Zhao, 2022). Because the air 

traffic system is a complex system with both temporal and spatial information, i.e., the level 

of flight delay will not only be influenced by the past throughput of the same airport but also 

be affected by the upcoming flights from other airports. Previous research (Jiang et al., 2022) 

re-construct the flight data into a graph and proposed a spatial-temporal neural network to 

predict the average delay of an airport. However, since most of the flights take off and arrive 

on time, the flight delay data is highly unbalanced. Previous research has shown that with 

different sequential models, such as RETAIN (Choi et al., 2016) and recurrent neural network 
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(Zaremba et al., 2014), the contrastive loss (Khosla et al., 2020) could improve the model 

performance than cross entropy loss for data sets with the severe class imbalance and the results 

are quite robust in different tasks (Chaitanya, Erdil, Karani, & Konukoglu, 2020) (Taleb, 

Kirchler, Monti, & Lippert, 2022) (You et al., 2020).  

 

To fulfill the research gap mentioned, we used a spatial-temporal graph neural network to 

classify the flight delay of the air transportation network in the United States and used the 

contrastive loss to tackle the data imbalance problem. We used the real flight data, retrieved 

from the Airline On-Time Performance (AOTP) Dataset, which provides a more realistic 

evaluation of the model's performance. There are several key steps included in developing our 

model. First, in order to apply contrastive loss, we reformatted the data to a classification 

dataset by setting a threshold where only the top 20% of flights with the most severe delays 

are labeled as delay. Second, the spatial-temporal graph neural network is built with two main 

modules. The graph convolution layer was used to capture the pattern of the flight propagation. 

The temporal convolution was leveraged to capture the time dimension node features 

aggregated by the graph convolution layer. Next, the conservative loss was implemented. The 

objective of the model is to minimize the contrastive loss by pulling the similar pairs together 

and pushing dissimilar pairs apart. Finally, the model gave binary output of 1 and 0, which 

represents the prediction result of delay and not delay separately. Data source, model structure 

and experiments are discussed in the following section in this chapter. 

 

3.2 Data Source and Preprocessing 

The data set used is from the Airline On-Time Performance (AOTP) Dataset provided by 

Bureau of Transportation Statistics. It contains the detailed non-stoop flight information of 

year 2016 in the United States. However, not all the information in the dataset is useful. First, 

we cleaned the dataset by removing the irrelevant information and only keeping the below 

features for each data record, including flight date, flight distance, departure and arrival 

airports code, actual time and delay time when departed and arrived, time of taxiing in and 

taxiing out. Flight records that miss those features were removed. 
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Next, we processed the data into spatial and temporal features to feed into the model. The 

spatial feature is a node graph which is represented by an adjacent matrix. To generate the 

spatial feature, each node is an airport and individual flights were aggregated as pairs. Then 

the adjacent relationship of each pair of nodes was calculated as the total number of flights 

between two nodes. The temporal information was extracted by inputting data as a time-series. 

For each node, the departure and arrival data were separated. At each time point we assigned 

a sequence number to each data record. Then we regrouped the data records based on the node 

and the sequence number and calculated three features for every thirty minutes. The features 

are the average number of flights, delay time and taxing time to evaluate the airport capacity 

and mobility. For each node, the feature values are the sum of both departure and arrival data. 

As a result, the data is in a form of a 3-D array  𝑋𝑋 ∈  𝑅𝑅𝑁𝑁∗𝐿𝐿∗𝐹𝐹 =   𝑅𝑅285∗17275∗3, where 𝑁𝑁 is the 

number of nodes, 𝐿𝐿 is the length of the time sequence and 𝐹𝐹 is the number of features. 

 

Finally, the data set was transformed into binary classes of delay and not delay. By setting a 

threshold of delay time acceptance, flights that had delay time longer than or equal to the 

threshold were labeled as delay and the rest were labeled as not delayed. In the experiments, 

the threshold is set to the top 50% with longest delays. 

 

3.3 Model Overview 

3.3.1 Problem Statement 

The air traffic network is defined as a graph 𝐺𝐺 = (𝑁𝑁,𝐸𝐸,𝐴𝐴) to gather spatial information. 𝑁𝑁 is 

a set of nodes representing each airport. 𝐸𝐸 is a set of edges which represent the connection of 

two nodes. 𝐴𝐴 ∈  𝑅𝑅𝑛𝑛∗𝑛𝑛  is the adjacent matrix where each element is the number of flights 

between a pair of nodes,  𝑛𝑛 is the number of nodes. Each node has 𝐹𝐹 features, which are the 

average number of flights, delay time and taxing time, to indicate its capacity and mobility. 

The input data is defined as 𝑋𝑋 = (𝑋𝑋1, 𝑋𝑋2, … , 𝑋𝑋𝐿𝐿 )𝑇𝑇  ∈  𝑅𝑅𝑁𝑁∗𝐿𝐿∗𝐹𝐹 , where 𝑁𝑁 is the number of 

nodes, 𝐿𝐿 is the length of the time sequence and 𝐹𝐹 is the number of features. The predicted delay 

status in the future at time step 𝜏𝜏  is defined as 𝑌𝑌𝜏𝜏 = (𝑦𝑦𝜏𝜏1,𝑦𝑦𝜏𝜏2, … ,𝑦𝑦𝜏𝜏𝑛𝑛)𝑇𝑇  ∈  𝑅𝑅𝑛𝑛∗1 . As a 

classification problem,  𝑦𝑦𝜏𝜏𝑖𝑖 is 0 if it will not be a delay or 1 if there will be a delay. 
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With above definition, the flight delay classification problem is formulated as: At time step 𝑡𝑡, 

given the historical data records in the past 𝑘𝑘 time steps until 𝑡𝑡, the objective is to classify 

whether there will be a delay or not at the next 𝑚𝑚 time steps: 

𝑌𝑌�𝑡𝑡+𝑚𝑚 =   𝑃𝑃(𝑌𝑌𝑡𝑡+𝑚𝑚| 𝑋𝑋𝑡𝑡−𝑘𝑘, . . . ,𝑋𝑋𝑡𝑡)  

 

3.3.2 Graph Convolution Network  

The air transportation network is modeled as a graph, in order to learn the spatial dependency 

of different airports, the graph convolution layer (Wu et al., 2019)was used to capture the 

pattern of the flight propagation among different airports. According to Henaff, Bruna, and 

LeCun (2015), the graph convolution is defined as: 

𝑔𝑔𝜃𝜃 ∗ 𝑥𝑥 =  𝑔𝑔𝜃𝜃(𝐿𝐿)𝑥𝑥 =  𝑔𝑔𝜃𝜃(𝑈𝑈𝑈𝑈𝑈𝑈𝑇𝑇)𝑥𝑥  

Where 𝑔𝑔𝜃𝜃 is the kernel, 𝐿𝐿 is the Laplacian matrix and its eigenvalue decomposition is 𝐿𝐿 =

𝑈𝑈𝑈𝑈𝑈𝑈𝑇𝑇, 𝛬𝛬 is a diagonal matrix and 𝑈𝑈 is Fourier basis. Considering the large amount of nodes 

of airports which result in huge amount of parameters, to improve the computation efficiency, 

Chebyshev polynomials were leveraged to approximate the computation (Simonovsky & 

Komodakis, July 2017), which is: 

𝑔𝑔𝜃𝜃 ∗ 𝑥𝑥 ≈  �𝜃𝜃𝑘𝑘𝑇𝑇𝑘𝑘(𝐿𝐿�)𝑥𝑥
𝐾𝐾−1

𝑘𝑘=0

 

Where 𝜃𝜃𝑘𝑘 is the polynomial coefficients that will be learned, 𝐿𝐿�  =  2
𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚

𝐿𝐿 −  𝐼𝐼,  𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚  is the 

maximum eigenvalue of Laplacian matrix.  𝑇𝑇𝑘𝑘 is the recursive Chebyshev polynomials and 

defined as: 

𝑇𝑇0(𝑥𝑥)  =  1 

𝑇𝑇1(𝑥𝑥)  =  𝑥𝑥 

      … 

𝑇𝑇𝑘𝑘(𝑥𝑥) = 2𝑥𝑥𝑇𝑇𝑘𝑘−1(𝑥𝑥) − 𝑇𝑇𝑘𝑘−2(𝑥𝑥) 

As a result, the final definition of the graph convolution is: 

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 =  𝜎𝜎(𝑔𝑔𝜃𝜃 ∗ 𝑥𝑥)  =  𝜎𝜎(�𝜃𝜃𝑘𝑘𝑇𝑇𝑘𝑘(𝐿𝐿�)𝑥𝑥
𝐾𝐾−1

𝑘𝑘=0

) 
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Where 𝜎𝜎 is the activation function. 

 

3.3.3 Temporal Convolution Network 

The temporal convolution was leveraged to capture the time dimension node features 

aggregated by the graph convolution layer. This temporal convolution is a standard 1-D 

convolution and defined as: 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 =  𝜎𝜎(𝛷𝛷 ∗ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺) 

Where the convolution operation, 𝛷𝛷  is the convolution kernel to be learned and 𝜎𝜎  is the 

activation function. 

 

3.3.4 Temporal Attention Mechanism 

Attention mechanism (Niu, Zhong, & Yu, 2021) was adopted to assist the spatial-temporal 

convolution network, which is used to dynamically capture the temporal correlations of the air 

traffic for each airport (Guo, Lin, Feng, Song, & Wan, 2019). The attention score matrix is 

defined as below: 

𝐴𝐴𝐴𝐴𝐴𝐴 =  𝑉𝑉 ∙  𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(ℎ1
𝑇𝑇𝑊𝑊ℎ2 + 𝑏𝑏) 

Where V, W, and b are learnable parameters, ℎ1
𝑇𝑇 and ℎ2 are the product of the current input 

and different learnable kernels. Each element in this attention matrix can be considered as the 

level of dependencies between two timesteps. Then the temporal attention was obtained after 

applying a Softmax function, which is used for normalization. It was directly applied to the 

input then fed into the model, which could capture relevant temporal information adaptively. 

 

3.3.5 Contrastive Loss 

Previous research  (Wanyan et al., 2021) has shown that with different sequential models, such 

as RETAIN (Choi et al., 2016) and recurrent neural network (Zaremba et al., 2014), the 

contrastive loss could improve the model performance than cross entropy loss (Zhang & 

Sabuncu, 2018)  for data sets with the severe class imbalance and the results are quite robust 

in different tasks (Chaitanya et al., 2020; Taleb et al., 2022; You et al., 2020). The main concept 
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is to minimize the contrastive loss by pulling the similar pairs together and pushing dissimilar 

pairs apart. The contrastive loss is defined as (Hadsell, Chopra, & Lecun, 2006): 

𝐿𝐿(𝑊𝑊,𝑌𝑌,𝑋𝑋1,𝑋𝑋2)  =  
1
2

(1 − 𝑌𝑌)(𝐷𝐷𝑤𝑤)2 +
1
2

(𝑌𝑌)𝑚𝑚𝑚𝑚𝑚𝑚(0,𝑚𝑚 −𝐷𝐷𝑤𝑤)2 

Where 𝑋𝑋1, 𝑋𝑋2 is a pair of input vectors, 𝑌𝑌 is a binary label assigned to this pair of input and 𝑌𝑌 

is 0 when the pair belong to the same class, 𝑌𝑌 is 1 when the pair belong to different classes. 

𝐷𝐷𝑤𝑤 is the function that calculates the distance between the pair, here the euclidean distance is 

used. 𝑚𝑚 is a positive margin and only dissimilar pairs within the margin contribute to the loss. 

 

3.3.6 Final Framework Structure 

The framework of the spatial-temporal graph neural network model is shown in Figure 3. The 

spatial-temporal convolution block is composed of a graph convolution layer and a temporal 

convolution layer, which realize the main function of learning both from both the spatial and 

temporal information simultaneously. By stacking multiple blocks together, the model is 

capable of capturing more complex dynamics in the data. However, there is a tradeoff between 

the computation efficiency and the model performance. At the end, a fully connected layer is 

appended to compile the result into classification prediction. 
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Figure 3: Framework of Spatial -temporal graph neural network model 

 

3.4 Experiment and Result Analysis 

For the experiment, the task was to use the air traffic data of the past 9 hours to predict if there 

will be a delay after 2 hours. Thus, the input is a 4D array, where the added dimension is the 

chopped time sequence with 18 time steps. The label is binary, where 1 represents there will 

be a delay after 2 hours for this airport and 0 means not. All the input data is processed with a 

zero-mean normalization. The whole dataset is divided into training set, validation set, and 

testing set with a ratio of 6:2:2. 

 

The model includes 3 spatial-temporal blocks. The max order of Chebyshev polynomials K is 

set to 3. The keener size for temporal convolution is also set to 3. The activation function for 

the spatial and temporal convolution layer are Rectified Linear Unit (ReLU) (Agarap, 2018). 

The batch size is set to 64 for training. The optimizer is Adamax (Llugsi, El Yacoubi, Fontaine, 
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& Lupera, 2021) starting at 0.0003. Figure 4 presents the confusion matrix of the classification 

test result: 

 

 
Figure 4: Confusion Matrix of the classification test 

 

The following equations define the accuracy and recall score of this classification test: 

 

𝐴𝐴𝐴𝐴𝐴𝐴 =  
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹  =
559876 + 1649

559876 + 422083 + 1067 + 1649 =  0.57 

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹  =
1649

1649 + 1067 =  0.61 

 

  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

 = 1649
1649+422083

 =  0.003 

 

The result is not as good as expected, probably due to below reasons and some exploring are 

undergoing to improve the performance: first, considering the complexity of the model, the 

data sample size is limited, including more data can provide the model with more information 

to learn the underlying pattern, considering there are only about 9,000 delay flight right now. 

Larger high-quality dataset with similar features for the other years and nations would be better. 
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Second, according to Federal Aviation Administration (FAA), from 2008 to 2013, there are 

69% of the flight delay caused by weather. The result in previous study (Sun Choi, Young Jin 

Kim, Briceno, & Mavris, Sep 2016) also showed that combining weather data with a machine 

learning model could improve the performance of flight delay prediction. We have not 

included the weather information in this experiment initially, because we are looking forward 

to seeing to what extent does the combination of spatial and temporal information help address 

this classification problem since it shows great potential on the regression task. However, seen 

from the results of our experiment, it needs some other information to improve the performance. 

Finally, while constructing the adjacent matrix which contains the spatial information, the 

weight between the nodes is now only using the number of flights without considering the 

distance. But, when the flight distance is longer, the flight is more likely to be affected, because 

the impact of a traffic event could be shared within a region (Jiang et al., 2022). We are looking 

into aspects to further improve the model’s performance. 
 
 
4 PHASE 2: SPECTRAL CLUSTERING FOR DYNAMIC AIRSPACE 

CONFIGURATION 
4.1 Overview 

As discussed in section 3.2.1, a dynamic approach to airspace configuration is needed that 

avoids redrawing airspace boundaries for each reconfiguration. To achieve this, we applied a 

novel approach that utilizes fixed airspace modules as building blocks that can be combined or 

split based on workload. Our approach is based on a spectral clustering algorithm that 

constructs a graph representation of the airspace using geographic information.    

 

In this graph, each module was represented as a node, and the edges between nodes were 

weighted based on the connection and workload of the modules in the current time window. 

The spectral clustering algorithm was then applied to predict the new configuration for the next 

time window based on the current workload. To promote efficient traffic flow, the adjacency 

matrix was constructed in a way that traffic centers with high traffic load are pushed away from 

each other, making the light-workload modules more attractive to the traffic center. Our 
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algorithm automatically identifies this pattern, where busy modules are in the center and 

surrounded by less busy ones. It then separates the busy sectors and combines adjacent idle 

modules to create new sectors, maximizing air mobility and reducing congestion during 

emergency evacuations. The results of our experiment outperform static airspace configuration. 

 

Our proposed approach presents a promising solution for implementing dynamic airspace 

configuration in real-world scenarios, particularly in emergency evacuation situations. This is 

achieved by first clustering airspace into modules that prioritize heavy workload centers 

surrounded by modules with spare resources. Then reallocating ATC resources within each 

cluster, we can balance the workload among modules to maintain maximum traffic capacity. 

Our algorithm employs fixed airspace modules as building blocks, eliminating the need for 

frequent airspace boundary redraws and facilitating efficient ATC resource allocation in 

response to changing traffic loads. Overall, this approach demonstrates significant potential 

for realizing dynamic airspace configuration in practical applications. 

 

4.2 Model Overview 

4.2.1 Data Preprocessing and feature selection 

     Flight Delays and Cancellations were published by the U.S. Bureau of Transportation in 

2015  (Department of Transportation Bureau of Transportation Statistics, 2017). This dataset 

includes the statistics tracking the on-time performance of domestic flights operated by large 

air carriers. Data preprocessing was conducted before feeding into the model. The original data 

has total of 30 attributes, as shown in Figure 5: 
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Figure 5: Flight data attributes 

 

However, not every attribute was recorded for each flight, thus columns with more than 25% 

missing values are removed, which including the weather delay. Also, there is strong 

correlation relationship between departure delay and arrival delay. Since there are a lot of 

factors that are not related to airport workload could influence the arrival time of a flight, such 

as weather, departure delay is used as the workload indicator. For the rest of data, only the 

related attributes are kept, including the scheduled date, airline, origin and destination airport, 

departure time and delay time. Canceled or diverted flights are removed. To reduce 

computation load, departure delay is transformed into binary label, 0 is non-delay flight and 1 

is delay flight.  

 

We focused on 21 airports in Florida to test and evaluate the model performance. The location 

of 21 airports in Figure 6 are used to construct the graph as shown in Figure 7: 
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     Figure 6: 21 Florida Airport location data 
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Figure 7: Location of 21 Florida Airports 

 

4.2.2 Airspace Graph Construction 

To utilize the geographic information and constrain the clustering algorithm to only 

reconfigure a sector using modules around it, the airspace was constructed as a graph, 

represented by adjacency matrix. In the graph, each smallest undividable module is the node 

and the edge weights between nodes are determined by the connection and the workload of the 

two modules. For two connected nodes, the edge weight measures the connectivity of them, in 

another word the distance in the graph space. This connectivity is inversely related to the 

workload of the nodes: as workload increases, distance between nodes also increases. Thus, 

when both nodes are busy, they are further apart on the graph. However, each of the become 

more attractive to neighboring nodes with lighter workloads that are geographically close to 

them.      
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Figure 8: Connection of 21 Florida airports 

 

There are two steps to constructing an adjacency matrix.  

Step 1: Generating Initial Airport Adjacency Graph (IAG). We identify if two nodes are 

connectible based on the geographic location. Based on the location of 21 airports in 

Florida, the assumption of the 21 Florida airports connection is shown in Figure 8. In 

a real situation, a pre-tactical evacuation route should be prepared and used as a 

connection assumption. Mathematically, we define that if two airports, 𝑣𝑣1 and 𝑣𝑣2 are 

connected if 𝑣𝑣2’s is the closest neighbor geographical neighbor of 𝑣𝑣1  at the same 

azimuth.  

Step 2: Creating Hybrid Airport Adjacency Graph (HAG): We assigned edge weight for 

each connection of airports. To balance the workload of each sector, on the graph, 

airports that are less busy should have stronger connections to each other, and the busy 

airports should be far away from each other to avoid being clustered together. In other 

words, the edge weight is negatively related to the total workload quantified by the 

predicted delay flights and delay ratio in the future 2 hours between the nodes. A 

modified radial-based kernel is chosen to encode the workload into edge weight, 

defined as below: 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖  =  
𝑑𝑑𝑖𝑖 + 𝑑𝑑𝑗𝑗
𝑓𝑓𝑖𝑖 + 𝑓𝑓𝑗𝑗
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𝑤𝑤𝑖𝑖,𝑗𝑗 =𝐵𝐵((1−𝜆𝜆)⋅(100⋅𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖)+(𝜆𝜆)⋅𝑑𝑑𝑖𝑖𝑖𝑖−𝑠𝑠ℎ𝑖𝑖𝑖𝑖𝑖𝑖) 

Where i and j are two connected nodes, d is the number of delayed flights in this time window, 

f is the total number of flights in this time window. Thus, 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖 is the percentage of delayed 

flights of node i and j and normalized between 0 and 1. We only use the percentage of delayed 

flights as an indicator of the ATC workload, more comprehensive workload can be explored 

in the future and substituted here. The variable 𝑑𝑑𝑖𝑖𝑖𝑖 is the geographical distance between the 

two airports. 𝜆𝜆  is the geographical weight factor in balancing between considering 

geographical distance and gross delay ratio, this factor is incrementally tuned in our program. 

𝐵𝐵 ∈  (0,1) is the base. Both B and shift are hyperparameters that can be fine-tuned, in our 

experiment, we use 300 as it is numerically more stable. where B is to satisfy the negative 

relation between workload and the edge weight and shift is to reduce computation load. 

Mathematically, the larger the edge weight between two nodes (airports), the more likely the 

two nodes should be connected and stay in the same cluster. 

 

4.2.3 Spectral Clustering on Hybrid Airport Adjacent Graph 

After constructing the Hybrid Adjacency Graph based on the prediction of futuristic delayed 

and incoming flights, spectral clustering is performed to cluster the nodes into different clusters, 

based on the strength of connections in the graph. Our assumptions here are stated as follows: 

 

Assumption I: In emergency evacuation or other busy scenarios, all flight plans are known 

at least two hours in advance.  

 

In other words, we try to find an optimal plan to allocate non-busy airport’s air traffic control 

resources to assist busy airports which are under emergency with possibly more delays. We 

believe this method can be generalized not only to emergency situations but can also be used 

in daily routines when passenger flows are distributed in a temporally and spatially unbalanced 

manner. 
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Mathematically, spectral clustering first performs Eigen decomposition of the adjacency 

matrix of the Hybrid Airport Adjacent Graph to project data from a higher dimension to a lower 

dimension, then, with only the limited information of the data, the clustering is easier and more 

accurate because the unimportant information has been eliminated. In general, we use the 

following steps to perform spectral clustering algorithm (von Luxburg, 2007):   

Step 1: Construct Hybrid Airport Adjacency Graph with 𝜆𝜆 = 0 , in this way, the initial 

clustering will not consider the geographical location of airports.  

Step 2: we calculate the degree matrix of the graph; The degree matrix is a diagonal matrix 

where the value at entry (𝑖𝑖, 𝑖𝑖) is the degree of node 𝑖𝑖. 

Step 3: we calculate the eigenvalues and eigenvectors of the degree matrix; then we sort them 

based on the eigenvalues; finally, we perform k-means clustering algorithm (Hartigan 

& Wong, 1979) with an initial 𝑘𝑘 =  5 on first 𝑛𝑛 -mean vectors with nonzero 

eigenvalues to get the initial clustering result. 

Step 4: scan each cluster in the initial clustering result, if any cluster contains more than three 

airports or with a diameter greater than 100 nautical miles (the typical transmission 

range of ADS-B transponder). We increase the number of clusters by 1 and 

simultaneously, increase the geographical weight 𝜆𝜆 by 0.1. However, the maximum 

value can only be 0.5. 

Step 5: We repeat the clustering procedure as described in Step (1) until all clusters satisfy the 

criteria defined in Step (4). 

Step 4 and 5 makes the clustering process adaptive and this algorithm can gradually evolve to 

use geographical constraints to create clusters with reasonable spatial size. Therefore, we do 

not require select dedicate 𝑘𝑘 and 𝜆𝜆 values for different scenarios. 

 

After spectral clustering on HAG, the airports that are geographically close and with relatively 

low workloads are combined as a new sector. Simultaneously, the busy airports with more 

delayed flights will be picked up and isolated. We can then move forward to select and merge 

the airspace and resources of non-busy airports with busy airports. Our goal of balancing the 

workload of different airports during emergency evacuations or other busy scenarios.  
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4.2.4 Fine-Tuning for Dynamic Workload Balancing 

In this stage, we aim to merge different airports’ governing regions to rebalance the workload 

of the area when there is an abrupt increase in the travel demand or flight delays. For this 

purpose, we have the following assumptions: 

 

Assumption II: the abrupt increase of travel demand under emergency situations could cause 

significant delay flights. In our experiment, if an airport's delayed flights within the predicted 

time window are greater than 2 delayed flights per hour (with a regional airport) or with a 

delay percentage within this time window being 30% (medium or large airports), we then mark 

this airport as a busy airport and needs external assistance. 

 

Assumption III: the nearby airport that used to assist a busy airport should: (a) has fewer 

delayed flights if the category of the airports is identical, or a lower percentage of delay if the 

category of the airport is different. 

 

Based on assumptions II and III, we develop the fine-tuning algorithm for each busy airport 

as follows: 

Step 1: We created a ranked list of busy airports based on (a) a user-defined priority level with 

a default value of zero, (b) the number of delayed flights, (c) delay ratio and (d) 

number of scheduled flights within the predicted time window. Here, the user-defined 

priority level can be filled when there’s an emergent situation.  

Step 2: We scanned all airports within 100 nautical miles of the busy airport and determine if 

a specific airport can be merged to assist a busy airport based on these criteria: (a) 

distance, (b) less number of predicted delayed flights, (c) lower delay ratio. 

Specifically, we created a ranked list of non-busy candidate airports and picked the 

closest one. 

Step 3: If any two airports are selected as a collaborative pair, we created a new cluster 

containing only the two airports, to prevent airspace conflict, we also ensure that 
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there’s no other busy airport within the combined airspace before establishing the 

collaboration relationship. 

In general, the algorithm could automatically separate currently busy sectors and combine the 

adjacent modules that are not busy as a new sector, allowing reallocating more resources from 

idle sectors to busy sectors to realize Dynamic Airspace Configuration with maximum air 

mobility. 

 

4.2.5 Evaluation Metric 

To assess how well the model balances workload across different sectors in the selected area, 

we use a metric called the "Regional Unbalanced level.” This metric can be used towards the 

workload of handling regular or delayed flights. This metric can be calculated in two steps: 

Step 1: We calculated the average number of non-delayed and delayed flights handled by 

airports within each cluster 

𝐹𝐹𝑖𝑖 = ∑ 𝑓𝑓𝑘𝑘𝑚𝑚
𝑘𝑘=1
𝑚𝑚

  and  𝐷𝐷𝑖𝑖 = ∑ 𝑑𝑑𝑘𝑘𝑚𝑚
𝑘𝑘=1
𝑚𝑚

 

Step 2: We calculated the variance of the 𝐹𝐹𝑖𝑖 and 𝐷𝐷𝑖𝑖 over all clusters, noted as 𝑆𝑆. This value 

helps to quantify the workload unbalance within the whole airspace in scope. 𝑛𝑛 is the 

number of clusters in the configuration. 

𝑆𝑆𝐷𝐷 = ∑ (𝐷𝐷𝑖𝑖−𝐷𝐷)2𝑛𝑛
𝑖𝑖=𝑖𝑖
𝑛𝑛−1

  and  𝑆𝑆𝐹𝐹 = ∑ (𝐹𝐹𝑖𝑖−𝐹𝐹)2𝑛𝑛
𝑖𝑖=𝑖𝑖
𝑛𝑛−1

 

 

Specifically, high 𝑆𝑆𝐷𝐷 or 𝑆𝑆𝐹𝐹 indicate the workload of handling delayed or regular flights are 

highly different in across different clusters. We assume that airports within the same cluster 

are collaborating with each other to handle emerging workloads. Therefore, smaller  𝑆𝑆𝐷𝐷 or 𝑆𝑆𝐹𝐹  

are preferred, because we aim to combine busy airports and surrounding idle airports through 

clustering to achieve a reasonable allocation of ATC resources, that is, to allocate resources 

from less busy airports in a cluster to busy airports. When the performance of the algorithm is 

good enough, each cluster can have enough resources, that is, the workload will be reduced, 

and the number of delayed flights of each cluster will be similar, so the variance will also be 

reduced. 
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4.3 Experiment and Analysis 

Traffic volume is affected by various factors such as the season, day of the week, and time of 

day, as well as weather conditions, holidays, and rush hour periods. To assess the model's 

performance under different traffic loads, we conducted two sets of experiments. The first set 

evaluates the model under various time windows on the same day, each representing a different 

level of traffic load. The second set evaluates the model's ability to generalize to different high-

traffic days by testing it on the same time windows across multiple days. By conducting these 

experiments, we can evaluate the robustness and generalization capabilities of the model under 

various traffic conditions. 

 

4.3.1 Different times on the same day   

To achieve a more accurate simulation of traffic conditions during an emergency evacuation 

where abrupt travel demands are causing huge workloads, the model is tested multiple times 

on the same day. Specifically, the testing is conducted on December 24th, a day with heavy 

flight traffic due to the holiday season. Three distinct 2-hour time windows are selected to 

represent different traffic conditions: 7 AM - 9 AM for low traffic (Figure 9 and Table 1), 12 

PM - 2 PM for high traffic (Figure 10 and Table 2), and 7 PM - 9 PM (Figure 11 and Table 3) 

for medium traffic. 
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(a)                                                                    (b) 

Figure 9: Clustering and airspace reconfiguration using flight plan and delay prediction for 

7:00 to 9:00AM Dec 24, 2015. (a) Airspace allocation based on flight plan and delay 

prediction. (b)  Fine-tuning of airspace configuration for better workload balancing      

 

As in Figure 9a and 9b, the airspace configuration algorithm combines MCO with SFB, FXE 

with FLL, and PNS with VPS to balance the workload; In the meantime, MIA is isolated 

independently because there’s no non-busy airport within a reasonable range and without 

airspace overlap with busy airports. As shown in Table 1, the unbalanced level in terms of 

handling regular and delayed flights has been reduced. 
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Table 1: Predicted workload distribution within each cluster (as in Figure 9b) and 

comparison of workload unbalance level for 7:00 AM to 9:00 AM Dec 24, 2015 

 

As in Figures 10a and 10b, the airspace configuration algorithm combines PNS and VPS, RSW 

with PGD, FXE with FLL to balance the workload. In the meantime, MIA is isolated 

independently because there’s no non-busy airports within reasonable range and without 

airspace overlap with busy airports. As seen in Table 2, the unbalanced level in terms of 

handling regular and delayed flights has been reduced. Compared with Figure 9, we have more 

clusters since the algorithm isolates some extremely busy airports and creates dedicated 

clusters for collaborating airports.      
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(a)                                                                      (b) 

Figure 10: Clustering and airspace reconfiguration using flight plan and delay prediction for 

12:00 PM to 2:00 PM Dec 24, 2015. (a) Airspace allocation based on flight plans and delay 

prediction. (b)  Fine-tuning of airspace configuration for better workload balancing      

 

 
Table 2: Predicted workload distribution within each cluster (as in Figure 10b) and 

comparison of workload unbalance level for 12:00 PM to 2:00 PM Dec 24, 2015 
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As shown in Figure 11a and 11b, the airspace configuration algorithm combines ECP with 

TLH, MCO with SFB, RSW with PGD and FLL with FXE to balance the workload; As seen 

in Table 2, the unbalance level in terms of handling regular and delayed flights has been 

reduced. Compared with Figure 9 and Figure 10, even though the travel demand at this period 

is less than in the busy hours but the unbalanced level in terms of the average delayed flight 

handled by each airport is even more severe. 

 

 
(a)                                                                      (b) 

Figure 11: Clustering and airspace reconfiguration using flight plan and delay prediction for 

19:00 PM to 21:00 PM Dec 24, 2015. (a) Airspace allocation based on flight plan and delay 

prediction. (b)  Fine-tuning of airspace configuration for better workload balancing 
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Table 3: Predicted workload distribution within each cluster (Figure 11b) and comparison of 

workload unbalance level for 19:00 PM to 21:00 PM Dec 24, 2015 

 

Table 4 shows the improvement of ATC’s workload unbalance level.      

 
Table 4: Comparison of the DAC algorithm in handling regular and delayed flights 
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4.3.2 Same time for different high traffic days 

To evaluate the performance of our airspace reconfiguration algorithm on different dates, three 

high traffic volume dates are chosen, which are 7/3, 11/25 (one day before Thanksgiving), 

12/31 (one day before new year). As shown in table 2, our algorithm still outperformed static 

airspace configuration on all three days. 

 
(a)                                                                      (b) 

Figure 12: Clustering and airspace reconfiguration using flight plan and delay prediction for 

12:00 PM to 14:00 PM July 3, 2015. (a) Airspace allocation based on flight plan and delay 

prediction. (b)  Fine-tuning of airspace configuration for better workload balancing 

 

As shown in Figure 12, the airspace configuration algorithm combines MCO with SFB, FLL 

with FXE, TPA with PIE, and RSW with PGD to balance the workload. In the meantime, our 

algorithm also identifies that the following airports’ airspace cannot be merged and should be 

considered independently: MIA, JAX, PNS, PBI, TLH, GNV, SRQ. As presented in Table 5, 

the unbalance level in terms of handling regular and delayed flights has been reduced.  
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Table 5: Predicted workload distribution within each cluster (Figure 12b) and comparison of 

workload unbalanced level for 12:00 PM to 14:00 PM July 3, 2015 

 

 
(a)                                                                     (b) 

Figure 13: Clustering and airspace reconfiguration using flight plan and delay prediction for 

12:00 PM to 14:00 PM Nov 25, 2015. (a) Airspace allocation based on flight plan and delay 

prediction. (b)  Fine-tuning of airspace configuration for better workload balancing 
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As in Figure 13, the airspace configuration algorithm combines MCO with SFB, FLL with 

FXE, JAX with GNV, TPA with PIE, and RSW with PGD. In the meantime, our algorithm 

also identifies that the following busy airports’ airspace are not merged and should be 

considered independently: MIA, PBI, ECP. As in Table 6, the unbalance level in terms of 

handling regular and delayed flights has been reduced.  

 
Table 6: Predicted workload distribution within each cluster (Figure 13b) and comparison of 

workload unbalance level for 12:00 PM to 14:00 PM Nov 25, 2015 

 

As in Figure 14, the airspace configuration algorithm combines MCO with SFB, FLL with 

FXE, TPA with PIE, VPS with PNS, and RSW with PGD to balance the workload. In the 

meantime, our algorithm also identifies that the following busy airports’ airspace are not 

merged and should be considered independently: MIA, JAX, SRQ. As in Table 7, the 

unbalance level in terms of handling regular and delayed flights has been reduced.      

 



 

 

Application of AI in the Optimization of Mobility in DAC During Emergency Situations 54 

 

 
(a)                                                                      (b) 

Figure 14: Clustering and airspace reconfiguration using flight plan and delay prediction for 

12:00 PM to 14:00 PM Dec 24, 2015. (a) Airspace allocation based on flight plan and delay 

prediction. (b)  Fine-tuning of airspace configuration for better workload balancing 

 
Table 7: Predicted workload distribution within each cluster (Figure 14b) and comparison of 

workload unbalanced level for 12:00 PM to 14:00 PM Dec 24, 2015 
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Comparing the results, we can find some common merging strategies are employed by our 

algorithm multiple times, such as MCO with SFB, FXE with FLL and etc. The airspace 

between MIA and SRQ may need to be further divided by introducing more ATC centers. In 

this experiments, our algorithm show its effectiveness by significantly decrease unbalance 

level the ATC’s workload in busy scenarios.      

 

4.3.3 Same time for different low traffic days 

As a comparison to section 5.3.2, we also compare the airspace configuration results on the 

busy hours (12:00 PM to 14:00 PM) on these low-traffic days: Feb 17, June 9, and Sep 8, 2015. 

 

 
(a)                                                                      (b) 

Figure 15: Clustering and airspace reconfiguration using flight plan and delay prediction for 

12:00 PM to 14:00 PM Feb 17, 2015. (a) Airspace allocation based on flight plan and delay 

prediction. (b)  Fine-tuning of airspace configuration for better workload balancing 

 

As in Figure 15, the airspace configuration algorithm combines MCO with SFB, FLL with 

FXE, TPA with PIE, VPS with PNS, and RSW with PGD to balance the workload. In the 

meantime, our algorithm also identifies that the following busy airports’ airspace are not 

merged and should be considered independently: MIA, JAX, SRQ, ECP, TLH, VPS. As in 
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Table 8, the unbalance level in terms of handling regular and delayed flights has been reduced. 

Even though the number of flights on this specific date is low, as indicated by the result of our 

clustering algorithm, the reduced traffic is due to the massive delay or other extreme situations. 

 
Table 8: Predicted workload distribution within each cluster (Figure 15b) and comparison of 

workload unbalanced level for 12:00 PM to 14:00 PM Feb 17, 2015 

 

As in Figure 16, the airspace configuration algorithm combines MCO with SFB, FLL with 

FXE, TPA with PIE, JAX with GNV, MLB with GRB, and RSW with PGD to balance the 

workload. In the meantime, our algorithm also identifies that the following busy airports’ 

airspace are not merged and should be considered independently: MIA, SRQ, PBI. As in Table 

9, the unbalance level in terms of handling regular and delayed flights has been reduced. 

Compared with Table 8, the air traffic volume is normal because there’s no sign of massive 

delay.  
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(a)                                                                      (b) 

Figure 16: Clustering and airspace reconfiguration using flight plan and delay prediction for 

12:00 PM to 14:00 PM June 9, 2015. (a) Airspace allocation based on flight plan and delay 

prediction. (b)  Fine-tuning of airspace configuration for better workload balancing 

 

 
Table 9: Predicted workload distribution within each cluster (Figure 16b) and comparison of 

workload unbalanced level for 12:00 PM to 14:00 PM June 9, 2015 
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(a)                                                                      (b) 

Figure 17: Clustering and airspace reconfiguration using flight plan and delay prediction for 

12:00 PM to 14:00 PM Sep 8, 2015. (a) Airspace allocation based on flight plan and delay 

prediction. (b)  Fine-tuning of airspace configuration for better workload balancing      

 

 
Table 10: Predicted workload distribution within each cluster (Figure 15b) and comparison 

of workload unbalanced level for 12:00 PM to 14:00 PM June 9, 2015 
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As in Figure 17, the airspace configuration algorithm combines MCO with SFB, FLL with 

FXE, TPA with PIE, JAX with GNV, MLB with GRB, and RSW with PGD to balance the 

workload. In the meantime, our algorithm also identifies that the following busy airports’ 

airspace are not merged and should be considered independently: MIA, TLH, JAX. As in Table 

10, since this is not a busy day, our algorithm’s efficiency in rebalancing the workload of ATC 

seems some decrease, but its performance is still promising. 

      

4.4 Result discussion 

4.4.1 Analysis of airspace merging within the same day 

 
(a) 

 
(b) 

Figure 18: Summary of airspace reconfiguration actions within Dec 24, 2015 (a) Merged 

airspace. (b) Airspaces that need further separation. 
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We summarize the airspace merging actions taken by the algorithm as in Figure 11. The three 

most successful merges are: FLL-FXE, MCO-SFB, and TPA-PIE, these airports that are 

selected to merge into collaborative pairs because: a) They are closely located within the 

communication range of ADS-B transponders and b) executive airports are not usually as busy 

as large international airports. This frequent merging also indicates that the three airports, FLL, 

TPA, MCO, are busy and need assistance all day round. Comparably, PBI and PNS are busy 

in the from afternoon to the evening, RSW requires merging in the morning and afternoon. 

Interestingly, GNV is dynamically assigned to collaborate with three different airports (DAB, 

TLH, JAX) in three different time periods. Figure b shows that MIA and its nearby airports are 

extremely busy all day round and makes it impossible to find collaborative airport that is less 

busy than it. Comparably, SRQ’s ATC team needs assistance in the afternoon and evening. 

Additionally, DAB and PNS needs additional assistance in the evening while JAX and PBI 

needs assistance in morning and afternoon, respectively. 

 

4.4.2 Analysis of airspace merging in one typical busy hour of different days 

 

 
(a) 
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(b) 

 

Figure 19: Summary of airspace reconfiguration actions observed on 12:00 PM to 14:00 PM 

on different days of 2015: (a) airspaces that are merged. (b) airspaces that need further 

separation 

 

The actions taken most frequently are the merging of FLL-FXE, MCO-SFB, PGD-RSW, and 

PIE-TPA, the reason for these mergings is that the international airports are always busy all 

years round and need assistances other regional or executive airports. GNV is surrounded by 

medium and busy airports, therefore, our algorithm dynamically assigned GNV to collaborate 

with airports for different scenarios. We also realized that EYW, MIA, SRQ are always 

assigned to not merge with other airports because MIA and SRQ locates in busy airspace of 

southern Florida, and they cannot find a less busy airport to collaborate with them. EYW is 

located too far away from other existing commercial airports, making it difficult to merge its 

airspace with other airports.  
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5 FINDINGS, CONCLUSIONS, RECOMMENDATIONS 
In emergency situations, the timely and efficient evacuation of people is of utmost importance, 

and aviation transportation plays a vital role in achieving this goal. However, assuring the 

safety of airplanes without creating huge and unbalanced load to the national airspace system 

during emergency evacuations can be challenging, particularly with the current airspace 

configuration method which aims mainly to satisfy the demands of normal operations. In this 

context, automated and dynamic airspace configuration (DAC) presents a promising and 

innovative. DAC has the ability to increase air traffic throughput while still balancing the 

workload of air traffic controllers, in this way, we ensure that the ATC operators in emergent 

airspaces will not have to face the surging workloads independently. Specifically, we integrate 

deep neural networks and unsupervised machine learning algorithms to develop a practical and 

effective DAC framework that can dynamically select collaborative airports to assist busy 

airports that is under emergent situations. Our experiments show that the workload imbalance 

degree of handling regular and delayed flights can by reduced by up to 50%. 

 

In the first phase, we reviewed the application of AI in ground transportation emergencies and 

emergency management response operations that could be used in DAC. From literature 

review, it is evident that further research still needs to be carried out especially when 

considering AI applications. After the surveys, we considered combining the two works 

mentioned in section 3.3 together by utilizing both temporal and spatial information.  

 

In the second phase, we proposed a Spatial-Temporal graph neural network model. By 

constructing a graph of the air transportation network, we want to let the DAC framework 

adjust the airspace based on the predicted situations in the future. The neural network learns 

the spatial information about the air traffic propagation from other airports. Also, the historical 

data of each airport was also included in the input, in order to let the model learn the temporal 

information about the past traffic condition. Experiments were conducted to evaluate the 

model's performance. The task is to the use the air traffic data of past 9 hours to predict if there 

will be a delay after 2 hours for a total of 285 airports in the U.S. The results show that the 

model has a classification accuracy score of 57% and recall score of 61%. The performance is 
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not as good as expected, some further research is undergoing to improve the model 

performance: first, finding a larger dataset which contains much more delay flight information; 

second, include weather information to assist model prediction as the majority of the delay 

flights are affected by this factor; finally, improve the construction method of the adjacent 

matrix by combining the distance and flight number for the weights between the nodes.  

 

In the third      phase, we proposed a novel approach that utilizes the future prediction of flight 

delays to reconfigure airspace to balance the workload of air traffic controllers. The assumption 

here is that airports needing assistance will face a lot of predictable delays in the near future. 

Our approach was based on a spectral clustering algorithm that constructs a graph 

representation of the airspace using geographic information. The spectral clustering algorithm 

was applied to predict the new configuration for the next time window based on the current 

workload. To promote efficient traffic flow, our algorithm first clustering airspace into groups 

that prioritize heavy workload modules as centers surrounded by modules with spare resources. 

Then reallocating ATC resources within each cluster to balance the workload among modules 

for new configuration of each time window. Thus, maximizing air mobility and reducing 

congestion during emergency evacuations. The results of our experiment outperform static 

airspace configuration. To evaluate the model ability of generation new configuration that can 

maintain balanced workload among modules, it is tested under three set of settings: different 

time windows on the same day, same time window for different high traffic days and same 

time window for different low traffic days. The result shows that, it reduces the unbalance level 

and number of delayed flights over 55% under high traffic volume.      

 

Our simulations on real data also revealed that the air space in Miami and Sarasota need to be 

further sliced to increase its capability, since our DAC algorithm has a low success rate in 

finding collaborative airports that are less busy within 60 miles. Other than that, the airspace 

in Key West airport is located too far away from other airports making it almost impossible to 

collaborate with other busy airports to share emergent workloads.  
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There are several limitations for our study at the current stage: (a) Since we were not able to 

fetch detailed information of ATC controllers in many airports, it makes it impossible to create 

a precise model to quantify the capability of each tower and balance their workloads. (b) We 

leveraged the delay ratio as a metric to roughly estimate the busy level of airports, better 

metrics can be used to make the model more practical. (c) The validity of data from public 

sources is quite limited, as airports’ operational data are seldom archived and shared properly, 

which makes the simulation less realistic and applicable. 

 

There is scope for future work to improve this approach in several ways. Firstly, sector 

workload evaluation can be enhanced by exploring more effective features beyond the number 

of delayed flights and total flights used in this study. Secondly, the performance of flight delay 

prediction can be improved by addressing the limitations of training the current Spatial-

temporal Graph Neural Network, such as the highly unbalanced dataset and the lack of weather 

data, which is one of the most important causes of flight delay. Additionally, the effectiveness 

of the contrastive loss could be improved by training with larger batch sizes, though hardware 

limitations currently prevent this. Lastly, the linear operations currently used in the spectral 

clustering algorithm to reduce the graph dimension may not be able to capture complex air 

traffic patterns at scale. Therefore, it would be worth exploring nonlinear methods such as 

autoencoders to reduce the graph dimension. 
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