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Executive Summary 

With the considerable development of the air transportation system in recent years, 

the demand for a more efficient evacuation system for airport security services has 

increased. The efficient and safe evacuation of passengers is important during emergencies. 

Overcapacity on a route can cause an increased evacuation time. Decision making is 

essential to optimally guide and distribute pedestrians to multiple routes while ensuring 

safety. Developing an optimal pedestrian path planning route while considering learning 

dynamics and uncertainties in the environment generated from pedestrian behavior is 

challenging. While previous evacuation planning studies have focused on either simulation 

of realistic behaviors or simple route planning, the best route decisions with several 

intermediate decision points, especially under real-time changing environments, have not 

been considered. The purpose of the study is to investigate the utilization of different 

machine learning methods using Deep Reinforcement Learning (DRL) to optimize 

evacuation in dynamic and complex environments such as fire, terrorist attacks, and more, 

particularly in an environment such as an airport. 

This project develops an optimal navigation model providing more navigation 

guidance for evacuation emergencies to minimize the total evacuation time while 

considering the influence of other passengers based on the social-force model. The 

integration of the optimal navigation model was ultimately able to reduce the overall 

evacuation time by 10.6%, compared to the use of only one modeling approach. This study 

further simulated robot agents to explore and evacuate from a dynamic environment with 

or without collaboration using the MARL Q-learning algorithm. The multi-agent 

collaboration method was found to perform better than the single-agent exploration 

regarding the evacuation time, death counts, and reward both in the static threats and 

dynamic threats environment. Results were discussed, and future directions were given in 

the end. DRL has been widely used in intelligent transportation systems, especially under 

emergent situations, and can explore the dangerous environment and make optimal 

decisions to guide the evacuation process for human beings. 
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The multiagent of this project is divided to human in part 1 and robot in part 2. The 

collaboration between human and robot is out of scope of this project. 

Part 1. Deep Adaptive Learning for Safe and Efficient 

Navigation of Pedestrian Dynamics 
Introduction 

Pedestrian evacuation in emergencies is a significant and ubiquitous problem 

especially when non-optimal pedestrian evacuations strategies are considered. Non-

optimal evacuations can cause unnecessarily prolonged evacuation times and increased 

injuries or fatalities. When an emergency occurs, human pedestrians are often required to 

make quick decisions under high time-sensitive pressure while dealing with uncertainty 

and unfamiliar surroundings (Neria et al. 2008; Alexander et al. 2013). Successful 

decision-making is largely dependent on the extent of information availability, accuracy 

of the information given, limited processing time (Proulx et al. 1991; Proulx 1993; Yoon 

et al. 2008; Hasan et al. 2011; Heliovaara et al. 2012; Knuth et al. 2013), and several 

interdependent human (e.g. decision making, cognition and perception) and 

environmental factors (e.g. layout, pedestrian density, visual range and obstacles, type of 

emergency etc.) (Purser et al. 2001 ; Cassidy et al. 2002 ; Cocking et al. 2009; Kobes et 

al. 2009 ; Vorst et al. 2010; Abolghasemzadeh et al. 2013 ; Mu et al. 2013). The 

uniqueness of the emergent situation makes computational modeling an essential tool for 

policy analysis and design (Shi et al. 2009; Miyoshi et al. 2012). 

While there are numerous successful models like social force models (Helbing et 

al. 1995; Namilae et al. 2017), and agent-based models (Kirby et al. 2015; Chen et al. 

2018) that address high density crowds, there is a glaring lack of effective modeling 

techniques targeted at low-to-medium-density pedestrian situations. Furthermore, 

previous studies have focused on either pedestrians’ strategic route planning or 

pedestrians’ physical movements without considering the interactions between these two 

levels. Most of the previous studies have focused on the simulation of realistic pedestrian 

dynamics, but the decision-making process has been static and hard to adapt to dynamic 

environment changes. Especially when there are multiple stationary obstacles (e.g., 
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chairs, walls) and moving obstacles (e.g., other pedestrians), the optimal strategy keeps 

changing accordingly. 

To safely reduce the congestion effect among other agents and ultimately produce 

a shorter evacuation time, an adaptive routing strategy per individual passenger is 

required. In this study, while previously developed social force model (Chen et al. 2018) 

are trained by real-world data to provide a realistic simulation of pedestrian behaviors 

under emergent situations, a dynamic routing model is developed to suggest the best 

options to evacuate faster. A performance of evacuation times will be compared against 

our optimally guided path planning model and social force model without optimal path 

guidance. 

Figure 1 

The framework for our Optimally Guided Path Planning Model Safe and Efficient 

Navigation of Pedestrian for Evacuations. The social force model (Pedestrian Dynamics 

Model) provides density input for the optimally guided path planning model. The two 

models integrated together provide a realistic evacuation model for low density crowds. 

The integrated model can be expanded for policy designs for Information Diffusion and 

Epidemic Spread. 
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In this study, we present a computational modeling framework expanded from 

previously developed social force model applied to an evacuation simulation. The 

pedestrian dynamics patterns are integrated into the path planning model solved by 

Markov Decision Process (MDP). While there are numerous limitations from previous 

approaches, the contribution of this project is summarized as follows: 

1. Model the process of pedestrian making choices by identifying a realistic 

decision and integrating with local pedestrian movements in a complex environment in an 

emergency evacuation. 

2. Integrate social force modeling with the optimally guided path planning 

model for emergency evacuations. 

3. Simulate newly integrated optimally guided path planning model applied to 

a pedestrian evacuation. 

4. Evaluate and compare the performance of average pedestrian evacuation 

time with and without optimal path guidance. 

Literature Review 

In prior related work (Namilae et al. 2017; Chunduri et al. 2018; Derjany et al. 

2018; Namilae et al. 2018; Liu et al. 2018) we developed a particle dynamics pedestrian 

movement model that tracks the movement of individual passengers in airplanes, airports, 

and combined it with stochastic infection dynamics. In Liu and Namilae et al. (2018), 

human panic behaviors were considered, and several simulations models were developed 

based on the review of previous studies, using social forces models and agent-based 

models. These factors include pedestrian density, environmental barriers, layout, numbers 

of evacuees, age, and gender. The significant effects of these factors on the efficiency of 

evacuations were identified and these results laid out a solid foundation for data 

collection, mathematical formulation, and simulation analysis for addressing the human 

behaviors under emergency. Other recent pedestrian evacuation studies using social force 

models such as Zhou et. al (Zhou et al. 2019) have studied route choice of pedestrians 

based on density, distance, and capacity factors. The study provided valuable insight at 

understanding effective strategies that result in quick evacuation response times 

depending on the number of evacuating pedestrians. 



 

 

   

    

   

     

     

  

 

 

      

     

  

  

 

   

 

 

 

 

   

  

   

  

    

 

  

  

 

10 

An MDP is a framework that has shown promise with the ability to solve path 

planning problems (Berlet et al. 2004; Ferguson et al. 2004; Alterovitz et al. 2007; 

Achour et al. 2010; Sidrane et al. 2018; Nardi et al. 2019). MDPs have also been used for 

modeling problems such as crowd simulation (Loza and Hernandez 2017), optimal 

dispatching (Keneally et al. 2016; Jenkins et al. 2018), dynamic vehicle routing (Ulmer et 

al. 2016), e-bike drivers decision-making during signal change (Dong et al. 2019), 

evacuation planning, and dispatching (Jenkins et al. 2018). Sidran et. al. (2018) solved an 

MDP using Mixed Integer Programming for an evacuation route planning problem in a 

closed loop. This method achieved to perform 90% performance of an optimal MDP 

problem. Jeong et. al. (2014) solved a mission planning problem involving multi-UAV 

surveillance by formulating an MDP (Zebala et al. 2012). Burlet et. al. (2004) presented 

an MDP-based planning tool for mobile robots. Nardi et. al (2019) proposed an 

uncertainty augmented MDP for path planning on road networks that considered the 

uncertainty of a robot’s location. The approach taken was able to trade off safety and 

travel time utilizing the information on the robot’s uncertainty. Achour et. al. (2010) was 

able to achieve improved execution time of MDP in a robot path planning example. 

Allamraju et. al. (2014) provided a non-stationary MDP based model for Unmanned 

Aerial Systems to avoid the potential of a UAV being seen by a human for privacy 

reasons. The goal was to plan a route that avoided the anticipation of where the human 

population would be based on time of day, year, and season. 

This study integrates a social force model and our optimally guided path planning 

model. The optimally guided path planning model navigates a group of pedestrians on a 

separate guided route that avoids the social force model path. The information on the 

local environment and human behavioral characteristics are formulated into a reward 

matrix to re-plan the pedestrians’ path or adapt to the changes in the environments. This 

approach incorporates modeling of the nonlinear characteristics of the human decision-

making processes beyond simple rule-based models. The main goal is to decrease the 

overall evacuation time with the incorporation of the optimally guided path planning 

model. 
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Methodology 

Social Force Model 

We model each mobile pedestrian as a particle, and immobile objects like walls as 

groups of stationary particles. The evolution of pedestrian i and their interaction with 

other pedestrians and stationary objects are modeled by molecular dynamics like a social 

force model (Helbing and Molnar 2000). The net force acting on the pedestrian i can be 

defined as: 

(1) 

with the pedestrian i’s position at a given time obtained by integrating r¯i(t) = v¯i(t)dt (the 

desired velocity of pedestrian i), v¯i(t) (that of the actual velocity), mi (the mass of 

pedestrian i) and τ (the evolution time constant). The momentum generated by a pedestrian 

i’s intention, denoted by , results in a self-propulsion force that is balanced 

by a repulsion force to obstacles in the direction of motion. We introduce location 

dependence to the desired velocity in the self-propulsion term as: 

where ev = cos(ϕ)ˆı + sin(ϕ)ˆ is the direction of desired motion. b 

vA and γiVB are the deterministic and stochastic components of desired velocity, δ 

is a distance constant such that at distance δ between ith and kth pedestrians the desired 

velocity of ith pedestrian is zero. The active particle evolution based on these equations in 

certain instances will be modified to match targeted behavior like in agent-based models. 

The walking speeds of individuals vary by age, group, and sex (Fang et al. 2004). In 

crowded locations like airports and mass gatherings, pedestrians often need to circumvent 

stationary and mobile obstacles. While the social force model works in simple situations, 

modifications to equations of motion are required for trajectories involving obstacle 

avoidance. While the social force model works in simple situations, modifications to 

equations of motion as shown in equation (2) are required for trajectories involving 

obstacle avoidance and formation of pedestrian queues. 
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Pedestrian Dynamic Agent Based Simulation 

We developed a simulation model of a midsize Airport (KTAR) by incorporating 

the social force model (Section 3.1) in agent-based simulation software AnyLogic( Kobes 

et al. 2009; Mu et al. 2013). As seen in Figure 2, KTAR has six doors for evacuation and 

in the model, it was assumed that the middle exit is blocked by danger and not accessible. 

All the passengers would use the other five doors equally (i.e., each door had a 16.67% 

chance to be chosen by passengers to evacuate). Passengers were expected to evacuate in 

the following six steps: (1) leave the aircraft and enter the terminal through the 

aerobridge at the second floor; (2) proceed to the escalator or stairs that connect the 

second floor with the first floor; (3) make a choice between using escalator or stairs; (4) 

reach the first floor via the choice they made; (5) choose one of the available doors to 

exit; (6) proceed to the selected door and leave the terminal. However, it should be noted 

that only the passengers inside the airport were considered; consequently, the time taken 

by the passengers to evacuate the aircraft and reach the airport was not considered for this 

study. 

The walking speed of the pedestrians in this study was set between 1.2 and 1.8 

m/s. According to (Martinez et al. 2012), in the emergency evacuation simulation, the 

passenger’s walking speed was uniformed distributed between 1.2 and 1.8 m/s. In 

addition to the sources of data mentioned above, the average speed of pedestrians on 

escalator and stairs were also provided by previous studies (Chen et al. 2018). For the 

data collection device, this study was collecting the total evacuation time from when the 

first passenger emerged on the second floor to when the last passenger left the terminal. 

One thousand passengers were generated in the gate area on the second floor of 

the airport, these passengers then ran to escalator and stairs down to the first floor to 

evacuate, simulating an emergency scenario. On the first floor of the airport terminal. 

There are six doors in the first-floor terminal, it was assumed the middle exit is blocked 

and not accessible. Thus, passengers can only use the other five doors to evacuate the 

airport. The authors in this project previously worked on this airport evacuation 

simulation. Our current work expands the previous simulation by incorporating the 

optimally guided path planning model to better navigate the evacuation pedestrians. 
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Figure 2 

An Emergency evacuation simulation of 1000 passengers using Anylogic software. 

Pedestrians were placed on the second level and required to exit on the first floor. The first 

floor has 6 exits location with one exit not accessible. The model runs 50 times and the 

average time to evacuate is 2115.53 seconds and standard deviation is 47.20 seconds. 

[Upper Level Terminal of Airport Building] 

[Lower Level Terminal of Airport Building] 

Optimally Guided Path Planning Model 

A Markov chain is a random process in discrete time that is a sequence of a 

random variable. We can describe a Markov chain tuple as follows < S,A,P,R >. There are 
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a set of finite states S = {S1,S2,...,SN}, N being the number of possible states. A is a finite 

set of actions A = {A1,A2,...,An}, n is the number of possible actions. Actions allow agents 

to transition from one state to another. A state transition P : SXAXS0− > [0,1], is the 

transition function of probabilities of transition from state S to state S’. R is defined as 

the Reward function. The transition probability matrix is a (I x J) matrix that can be 

denoted as: 

𝑃𝑃 

𝑝𝑝 𝑝𝑝21 … 𝑃𝑃1𝐽𝐽 ⎡ ⎤𝑝𝑝21 𝑝𝑝22 … 𝑃𝑃2𝐽𝐽 = ⎢ ⎥ (3) ⋮ ⋮ ⋱ ⋮⎢ ⎥ 
⎣𝑝𝑝11 𝑝𝑝12 … 𝑃𝑃𝐼𝐼𝐽𝐽 ⎦ 

R (S, A, S’) is the reward vector, defined as the reward received for a transition 

from state S to State S’. This model rewards state is determined by the pedestrian 

movements taken by the social force model (this will be discussed in detail in Section 

5.1). 

We developed a reinforcement learning technique to learn local navigation 

behaviors and simulate dynamic pedestrian behaviors when there is an emergency at 

airport buildings. This model determines intermediate goals for each pedestrian, which is 

a key input for the time evolution of pedestrian trajectories. Previous reinforcement 

learning studies have used desired velocity and the proximity to other pedestrians, when 

the intermediate goal is moved along with the environment, previously learned 

information interferes with the task of finding the new goal. The sub-agent model we 

developed separately. This introduces stochastic and dynamic terms (e.g., self-

propulsion) to provide a more realistic learning process and simulation. 

To guarantee global goal-seeking in complex dynamic environments, we 

formulate the problem, with the main objective of maximizing the expected accumulative 

reward r of with paired action and space (s, a). The Q look-up table provides training of 

the best action a ∈ A in a finite action space, based on pedestrian’s state s ∈ S, for optimal 

learning. The discount factor, γ, balances the immediate reward (exploration) and future 

reward (exploitation). A negative reward is given for crashing into stationary objects or 

another pedestrian at the airport in an evacuation scenario to learn a proper action. 
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𝑄𝑄: 𝑄𝑄(𝑠𝑠𝑡𝑡 , 𝑎𝑎𝑡𝑡 ) = (1 − 𝛼𝛼)𝑄𝑄(𝑠𝑠𝑡𝑡 , 𝑎𝑎𝑡𝑡) + 𝛼𝛼(𝑟𝑟𝑡𝑡+1, +
                  (4) 𝛾𝛾𝑚𝑚𝑎𝑎𝑚𝑚{𝑄𝑄(𝑠𝑠𝑡𝑡+1, 𝑎𝑎) − 𝑄𝑄(𝑠𝑠𝑡𝑡 , 𝑎𝑎𝑡𝑡)}

𝑎𝑎 

𝑡𝑡 𝑡𝑡 𝑡𝑡 𝑓𝑓 The pedestrian’s state 𝑆𝑆 = �𝑣𝑣𝑝𝑝, 𝑎𝑎𝑣𝑣 , 𝑑𝑑𝑞𝑞 , 𝑣𝑣𝑝𝑝, 𝑑𝑑𝑝𝑝, 𝑎𝑎𝑝𝑝, 𝑑𝑑𝑝𝑝 , 𝑎𝑎𝑝𝑝
𝑓𝑓�has high dimensional 

space with features: vp (velocity of the current pedestrian as an out from the social force 

model); av (angle of the velocity vector relative to the reference line), dg (distance to the 

goal), vpi (velocity of the nearest pedestrian i in current pedestrian’s visible range); 

(distance to the nearest pedestrian i), (angle of the nearest pedestrian i location relative 

to the reference line), djp (distance to the stable object j (chairs and walls), ajp (angle of 

the stable object j location relative to the reference line). As shown in Figure 1, the initial 

pedestrian dynamic model provides the velocity vp (t=1) as an input to the reinforcement 

learning model in the initial stage (st=1,at=1). In each time step, the optimal action of the 

reinforcement learning model serves as an input to velocity model for more accurate 

velocity information vp (t=2) in the dynamic environment. The velocity is used to update 

the next time stage state and action (st=2,at=2) in the reinforcement learning model (Sutton 

and Barto 2018). 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆: 𝑄𝑄(𝑠𝑠𝑡𝑡 , 𝑎𝑎𝑡𝑡 ) = 𝑄𝑄(𝑠𝑠𝑡𝑡 , 𝑎𝑎𝑡𝑡 ) + 𝛼𝛼(𝑟𝑟𝑡𝑡+1, + (5) 𝛾𝛾𝑄𝑄(𝑠𝑠𝑡𝑡+1, 𝑎𝑎𝑡𝑡+1) − 𝑄𝑄(𝑠𝑠𝑡𝑡 , 𝑎𝑎𝑡𝑡 ) 

The SARSA (State-Action-Reward-State-Action) algorithm (Helbing et al. 2000) 

is similar to the Q-Learning algorithm except it is an on-policy algorithm for Temporal 

Difference (TD) Learning. This algorithm varies slightly from Q-Learning, when 

updating, the maximum reward is not always chosen and updates Q-values. Rather the 

SARSA algorithm utilizes the same policy that was generated from the previous action 

for the next upcoming action. This is accomplished by completing the Q function updates 

in equation 5. The discount factor, γ, balances the immediate reward (exploration) and 

future reward (exploitation), similar to the Q-Learning approach. 
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Research Approach 

Environment 

The Optimally Guided Path Planning model environment for reinforcement 

learning created is a 10 x 10 grid world (500 sq. in by 500 sq in.), with eleven obstacles 

and a terminal state (exit) (100 sq. in. opening) shown in Figure 6. The pedestrian icon 

represents the starting location and the exit signs represent the terminal states. Currently, 

the reward functions value is determined by the states 

Figure 3 

A Pedestrian Density Map generated from our evacuation scenario produced by AnyLogic. 

The simulation is of 50 pedestrians navigating throughout the environment to the exit 

location. The red shaded areas pictured show the most populated areas of the environment. 

The blue shaded areas show the areas that are not highly dense. The upper limit of the 

density range is set by default to 1.5 m/p2 by AnyLogic software. The pedestrian density 

map enables us to determine the most densely populated areas and incorporate into our 

optimal path guidance model for path planning. 



 

 

  

   

  

   

 

   

 

   

 

  

 
  

    

   

 

 

  

  

 

    

    

  

 

 

 

 

17 

pedestrian density value and whether the goal of reaching the terminal state is met. 

Highly dense areas have higher a reward value and lower dense areas have a lower 

reward value. The reward for reaching the terminal state is +100. The social force 

pedestrian movement provides an input to the magnitude of the reward values of the 

optimally guided path planning model. A pedestrian density map (Figure 3) was provided 

to identify the highly traversed and congested areas. To generate the pedestrian density 

map, the simulation was ran following social force dynamics using AnyLogic, and the 

results were recorded after the entire simulation was complete. A density value was 

associated with each square inch. AnyLogic has a built-in function "maximumDensity" 

that will display and record the maximum observed density values. This value refers to 

the maximum total density of that location (per square inch) for the entire simulation. 

Following the completion of the simulation, the results were stored in a csv file via 

AnyLogic. MATLAB software was used to generate a density map based on the 

maximum density values recorded (as seen in Figure 3). The default and recommended 

upper limit of density is set to 1.5p/m2 by AnyLogic. Figures 4 and 5 have increased 

upper limit values of 3p/m2 and 5p/m2 to illustrate analyzing the density maps of a larger 

density value. The highly traversed areas represent the areas shown in red on the 

pedestrian density map. The most densely populated areas are recorded and converted to 

the optimally guided path planning model’s environment. The highly traversed areas have 

a reward of -10. The highly negative rewards are to discourage navigation through highly 

populated areas and avoid congestion as much as possible. The orange squares represent 

the obstacles present. The obstacles are similar to walls and these states cannot be 

traversed through. The remaining state locations not mentioned previously are all set to a 

reward of -1. This is to avoid taking any unnecessary steps, further reducing the time it 

takes to exit. It is important to note that in an airport evacuation scenario, police officers 

and security guards would be placed along the path to guide pedestrians. This is needed 

to ensure pedestrians will follow the specified optimal guided path. 
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Figure 4 

A Pedestrian Density Map generated from our evacuation scenario produced by AnyLogic 

with an upper limit density range set to 3.0 p/m2. The simulation is of 50 pedestrians 

navigating throughout the environment to the exit location. The red shaded areas pictured 

show the most populated areas of the environment. The blue shaded areas show the areas 

that are not highly dense. The pedestrian density map enables us to determine the most 

densely populated areas and incorporate into our optimal path guidance model for path 

planning. 



 

 

  

 

  

 

 

 

100 

(/) 

1200 
u 
.£ 

&300 
Cl) 

400 

0 

Pedestrian Density Map 

100 200 300 
Sq. Inches 

400 

5 

4 

3~ 
"cii 
C 
(I) 

20 

0 

19 

Figure 5 

A Pedestrian Density Map generated from our evacuation scenario produced by AnyLogic 

with an upper limit density range set to 5.0 p/m2. The simulation is of 50 pedestrians 

navigating throughout the environment to the exit location. The red shaded areas pictured 

show the most populated areas of the environment. The blue shaded areas show the areas 

that are not highly dense. The pedestrian density map enables us to determine the most 

densely populated areas and incorporate into our optimal path guidance model for path 

planning. 



 

 

 

   

    

 

  

 

 

 

 

  

   

     

 

 

  

  

Startin, B B EEi Loation 

BBB B i 
Optimally Guided Path ~ -. __ • _ - \ - - -~ \-----· t · ----------

~ B B 
EXIT 

EXIT 

20 

Figure 6 

The Emergency Evacuation Environment, eleven objects are placed throughout the 

environment. The obstacle states (orange squares) are not able to be accessed by the 

pedestrians. All of the pedestrian’s origin is the top right of the environment, labeled 

Starting Location. The destination (exit) is the bottom left of the environment. The optimally 

guided path is the shaded gray area. The pedestrians that are not following the social force 

model will use this optimally guided path to travel throughout the environment. 

Agent Based Evacuation Simulation Anylogic 

A baseline example of 50 pedestrians, exiting the environment, is created and 

simulated following social force model dynamics (Figure 7). The parameters for social 

force models have been validated by comparison with empirical data in a number of 

previous publications (Helbing et al. 1995). We utilize these parameters in our simulation 

models. The path planning model changes the destination but the social force parameters 

are not altered. Multiple scenarios (5) are investigated regarding average evacuation time 

by the number of pedestrians following each model. The initial average evacuation 

timing of 50 pedestrians following the social force model only was 84.95 seconds. The 
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goal is to incorporate both modeling techniques together to reduce the overall time it 

takes to evacuate the environment. The benefit of the MDP decision making is to provide 

an additional optimally guided route that avoids obstacles, and highly congested areas, 

while reducing the overall time it will take for all pedestrians to exit the room. The 

pedestrian walking speed is uniformly distributed between 0.5 and 1.0 m/s. The 

additional five scenarios involve dividing the number of pedestrians to follow different 

modeling techniques. Each of the five scenarios will increase the number of pedestrians 

following the optimally guided path planning model by five until there is an even split of 

25 pedestrians following each modeling technique’s path. The first scenario consists of 

five pedestrians following the optimally guided planned path and the remaining 45 

pedestrians will follow the social force model dynamics. The pedestrians are divided into 

the following groups for the five scenarios: (45/5, 40/10, 35/15, 30/20, 25/25). 

Results 

The baseline example has an average evacuation time was 84.95 second. In the 

remaining scenarios we plan to improve performance by reducing the evacuation times. 

The evacuation times of the remaining examples are shown in Table 1. In Scenario 1, the 

incorporation of the five optimally guided path pedestrians is shown to reduce the overall 

evacuation time to 80.64 seconds, this is a 5.1% decrease of total evacuation time. In 

Scenario 2, five more pedestrians (ten total) are following the optimally guided path 

planning model. This further reduces the evacuation time to an average of 79.71 seconds. 

Scenario 3, 30% of the pedestrians are now using the optimally guided path. This 

increases the percentage decrease of the average evacuation time to 9.2%, and overall 

average evacuation time to 77.16 seconds. In the final scenario, 50% (maximum 

capacity) of the pedestrians are chosen to follow the optimally guided path. We do not 

overload this path by creating any additional bottlenecks or creating anymore delay. The 

final scenario was able to reduce the average evacuation time to 75.9 seconds. By being 

able to reduce the average evacuation time to 75.9 seconds, the percentage decrease of 

evacuation time was 10.6%. The results indicate the addition of the optimally guided path 

planning model was successful in decreasing the average evacuation time to evacuate. 
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Figure 7 

Pedestrian Evacuation Simulation developed in Anylogic software. The yellow agents are 

the pedestrians following the social force model and the blue agents are the pedestrians 

following the optimally guided path planning model. Notice the social force model 

pedestrians are able to freely travel throughout the environment. The remaining 

pedestrians are guided using the optimally guided path to navigate throughout the 

environment. 
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Table 1 

Reduced Evacuation Time Results 

Scenario SF Path Pedestrians Alt. Path Pedestrians Average Evacuation Time Percentage Decrease of Evacuation 
Time 

Baseline Example (SF only) 50 0 84.95 sec. — 
Scenario 1 45 5 80.64 sec. 5.1% 
Scenario 2 40 10 79.71 sec. 6.2% 
Scenario 3 35 15 77.16 sec. 9.2% 
Scenario 4 30 20 76.47 sec. 10.0% 
Scenario 5 25 25 75.90 sec. 10.6% 

Discussion and Conclusion 

This project successfully incorporates a social force model into an optimally 

guided path planning model, for the evacuation of a group of pedestrians. Pedestrian 

navigation safety is critical to saving lives and preventing injury in a multitude of 

emergencies such as active shooter incidents and fires. By integrating the two models, we 

can further optimize mobility in emergency evacuation situations. Our optimally guided 

path planning model incorporates the social force model’s density map and assigns highly 

congested areas to negative reward states. The negative reward states are used to avoid 

congested areas and pathways and advise pedestrians to follow the optimally guided path. 

The baseline example evacuation time was 84.95 seconds. Utilizing the two integrated 

models, we were able to show a reduction in the average evacuation time of at least 4.31 

seconds or a 5.1% evacuation time decrease. The total evacuation time was able to be 

reduced to a total of 75.9 seconds and a 10.6% decrease in average evacuation time 

compared to the baseline example. 

In the future, we will expand the current MDP framework to a Time-Dependent 

MDP (TDMP). The time-dependent MDP will incorporate dynamic reward changing 

based on the social force models’ movement in current time. Using a TDMP may reduce 

the overall evacuation time by providing optimal routing choices in real-time with 

rewards being updated at each time step. Expanding our current modeling framework will 

allow for incorporating a more robust and expansive reward function. The reward 

function will be able to be updated based on the current states pedestrian’s density map, 

and the agent’s distance from the goal. We plan to apply this integrated modeling 
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technique to a simulated airport emergency evacuation. The belief is that applying this 

modeling technique will reduce the total overall evacuation time of pedestrians in an 

emergency airport situation. The findings of this project outcome will lead to a 

multidisciplinary computational framework for understanding and modeling the human 

decision-making process and resulting actions in emergency evacuations. 
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Part 2. Multi-robot Collaboration for Airport Emergency 

Evacuation 

Introduction 

Background 

In the past decades, the air transportation industry has been expanding rapidly 

along with the flourishing trajectory of the global economy (Airport Emergency Plan, 

2011). The evolution of modern aviation has increased the demand for airport security 

services and the necessity for more efficient evacuation strategies in the emergencies, 

such as natural disaster like fire or terrorist attack. 

An emergency usually occurs instantaneously, requiring immediate decision-

making ability (Wang et al., 2016). This is especially true in the case of environments 

like airports. According to Title 14 Code of Federal Regulations (CFR), Part 139, airport 

certificate holders must develop and maintain an Airport Emergency Plan (AEP) to 

minimize the damage, whether to human or property in an emergency, as a part of their 

airport certification manual (Airport Emergency Plan, 2011). More detailed suggestions 

are given by the Federal Aviation Administration (FAA) in the Advisory Circulars (AC) 

150/5200-31C (FAA, 2009). Therefore, it is imperative to continue pushing the 

technological capabilities and improve current emergency evacuation strategies. 

The Current State of Evacuation Plans 

The current emergency drill models use the existing case studies and experiments 

to prevent future accidents, which can be inefficient and resource-consuming (Arumugam 

et al., 2016). However, evacuation plans simulated through 'mock drills' sometimes 

cannot truly simulate the real situations thus are not able to react to sudden hazards in 

time effectively. For instance, airport fire evacuation drills cannot simulate the situation 
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of falling objects blocking the exits on the evacuation routes. In reality, when similar 

unexpected scenarios occur, the crowd is likely to panic, people at the scene are prone to 

cause crowd trampling, stampede, which might result in loss of life (Balachandar et al., 

2019). Thus, a method that can intelligently generate evacuation routes according to the 

discrepancies in each specific emergency circumstance can be lifesaving. 

Conventional approaches to generating an evacuation path plan concentrate on 

computer modeling techniques (Bi et al., 2019; Bunea et al., 2016). Computer simulation 

technology protects volunteers' safety, which may occur dangerous in 'mock drills' in 

reality and provides valuable evacuation information (Carino & Garciano, 2019). The 

modeling methods, such as the social force model (SFM) (FAA, 2009) and the hybrid 

model (Feng & Wang, 2019), are based on creating fundamental rules to control each 

agent's movement. It is prone to ignore the interaction with other agents and the 

environment. 

Like many public transportation environments, airports are rather complex 

environments with numerous social interactions (Gelada & Buckman, 2019). Therefore, 

for traditional non-learning-based algorithms, simulating the entire airport environment 

and generating evacuation routes for each agent is relatively time-consuming and often 

far from optimal. 

Agent-Based Learning 

The hazardous environments with unidentified threats expose first responders and 

evacuees to significant risks. Robot agents or drones exploring the dangerous 

environment before the human evacuation can decrease the risk for the people involved. 

With the assistance of robot agents or drones, the evacuees can find the optimal 

evacuation routes without wandering around in distress situations and exposed to 

unknown dangers. While the agents are exploring the environment, the updated routes 

can be shown to human evacuees as a digital decision aid on devices such as mobile apps. 

The real-time revised map becomes more straightforward as the agent learns more about 

the changing circumstances. First responders and evacuees can add holistic views and 

their relative locations to facilitate the evacuation process. Additionally, robot agents can 
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be integrated into the AEP or other emergency procedures to improve efficiency in 

dealing with emergencies planning and policy making. 

Emergencies are unpredictable, and people need to be evacuated from dangerous 

places to secure shelters as soon as possible. Researchers from different disciplines have 

discovered different paths to enhance the efficiency of emergency evacuations, and they 

have provided valuable suggestions (Arumugam et al., 2016; Bunea et al., 2016; Liu et 

al., 2016; Makinoshima et al., 2016; Shen et al., 2015; Wang et al., 2016). More and 

more researchers in this field, as of late, have shown interest in agent-based modeling for 

emergency evacuation, especially for complex scenarios that can transpire in unsecure 

environments. 

Within these simulation models, reinforcement Learning (RL) has become more 

popular in evacuation primarily among all the machine-learning models because of its 

capability of "learning through exploration." The agent learns through trial-and-error 

while interacting with the environment that helps it make the right decision (Bunea et al., 

2016). RL does not require specific control over the environment or models about the 

environment but instead uses positive and negative rewards to determine the best future 

decision. This feature is critical for emergencies, as the threats and environments are 

usually unidentified to decision-makers, without explicit solutions for such evacuation 

tasks. RL also allows agents to learn from themselves and others through the rewards and 

punishment mechanism, making RL an ideal method for exploring and learning an 

unknown environment with unknown threats. 

In improving evacuation efficiency, learning-based RL variation algorithms have 

drawn interest from many researchers. In a large-scale and convoluted environment, 

multi-agent reinforcement learning (MARL) can be applied (Isele et al., 2018) to allow 

agents to interact with the dynamic environment and perceive it through reward and 

punishment signals to maximize the reward by trial and error. MARL is considered the 

closest algorithm related to the knowledge accumulation path as humans in reality (de 

Witt et al., 2018). Some researchers have already adopted those characteristics to the path 

planning problem (Xu et al., 2020; Fatima et al., 2017). However, the adaption of MARL 

to the airport evacuation simulation is not straightforward. That is part of the reason that 

this study was intended to present a systematic study including environment simulation, 
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model design, and analysis of evacuation behavior in macro and micro ways. 

Macroscopically speaking, the agents can learn the optimal evacuation path universally. 

The agents can avoid dynamic obstacles and correct the route according to the challenges 

that block the original course in the micro aspect. Agent rewards, success rate, and 

evacuation time were used to evaluate the learning efficiency. 

Furthermore, this study also compared the performance of single-agent 

exploration and multi-agent collaboration during emergency evacuation using RL 

algorithms. Two different environments were utilized in the study: the simple 

environment with one threat and the complex environment with three threats. The 

benefits of MARL was further verified using a more dynamic and realistic airport 

diagram. 

It is believed that agent-based modeling effectively simulates emergency 

evacuation as the agent represents the actual human/robot that makes stochastic decisions 

and movements. The overall rational for using multiple agents is that a single robot agent 

is usually used to explore different environments, but it can take a long time to learn and 

complete the exploration. Multiple agents exploring can lessen the time consumed, 

especially when agents communicate and collaborate. 

Summary 

In this study we intended to investigate the difference in the performance between 

single-agent exploration and multi-agent exploration regarding time, death counts, and 

rewards. The interaction between the complexity of the environment and the numbers 

agents were also investigated. 

To summarize, the main contributions of this study are as follows: 

1. Complex environments were used to simulate the airport like situations. Not only 

static obstacles were used to train the model, but this project also simulated the 

situation that the obstacles could move randomly or move in a specified 

trajectory. 

2. Agents’ communications were investigated in the study. This project takes a new 

sharing Q-table mechanism to enhance the learning convergence rate among 
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agents. Multi-agents share their Q-table as a 'communication' mechanism. At each 

step, agents update their own Q-table and record their update value on the 

summary table. Then agents take actions that will get the most reward based on 

the summary table. In this way, the success rate, evacuation time, and 

convergence rate will be improved effectively. As a result, this method is more 

suitable for solving the evacuation problems. 
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Review of the Relevant Literature 

Evacuation Safety 

Emergency evacuation is a complex and dangerous situation where critical decisions 

must be made under extreme time pressures (Wang et al., 2016), and lives could be saved 

if correct decisions were made promptly. During an emergency, the public may not be 

able to make the optimal decisions with limited time and information due to the complex 

nature of the emergent situation. Furthermore, an emergency can often cause chaos and 

congestion, especially in public transportation where the pedestrian density is high (Feng 

& Wang, 2019). The efficiency and safety of the emergency evacuation would be greatly 

compromised if no proper training or assistance was provided before or during the 

emergency evacuation (Purser, 2015). 

For example, in an investigation of two care-home fires, evacuees were unable to 

identify the fire location and nearby doors due to training inadequacies. Several lives 

were lost in minutes because of the poor evacuation response and strategy (Purser, 2015). 

It may seem intuitive to find the optimal evacuation route based on the memory and prior 

experience, but the situation is quite different under emergency evacuation. People may 

panic, and under the high time pressure, they could lose the ability to think rationally and 

make reasonable decisions. Researchers have found several ways to improve this 

situation by advance assessment and evacuation assistance (Cariño & Garciano, 2019; 

Zhang et al., 2016; Yamamoto et al., 2018; Zhang & Yi, 2015). A little help during the 

evacuation may seem negligible, but the help may save the time for thinking and offer a 

way to survive. 

Many models were developed to assess the risk under emergency. For example, 

Zhang et al. (2016) proposed a steel-temperature rise model to assess the risk of 

evacuation safety in the collapse of a large steel-structured building. This model can be 

used to make emergency plans for steel-structured buildings when encountering disasters 

like earthquakes. It can also be used to improve people’s awareness of safe evacuation 

routes during a crisis. Cariño and Garciano (2019) developed a seismic evacuation safety 

index to help assess evacuation safety for schools. The evacuation safety index can help 
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schools evaluate the safety of the classroom and campus building to ensure the solidity of 

the structure during the evacuation. 

There are also various models developed to investigate different evacuation 

situations, such as evacuation from buildings and classrooms, tsunami evacuation, toxic 

environment evacuation, and post-disaster evacuation (Liu et al., 2016; Wang et al., 

2016). Modeling specific types of emergencies can help people better understand the 

nature of the events, what to expect, and how to react. Detailed emergency evacuation 

plans can thus be designed to accommodate different facilities layouts and for different 

purposes. 

Liu et al. (2016) simulated a classroom evacuation situation to investigate how 

evacuation efficiency is affected by classroom layouts. The classroom with more exits 

had a significantly higher efficiency in the evacuation, and students who followed the 

guidance can evacuate faster and safer. During the evacuation, teachers may lose control 

of the situation which makes training for teachers and students essential. It is suggested 

for school officials to conduct more fire drills regularly. Students can learn to evacuate 

safely and efficiently through frequent drills and avoid dangerous and chaotic 

evacuations in real emergency situations, as in the fatal care home fires (Purser, 2015). 

Liu et al. (2016) also suggested that future studies should look into specific type of 

emergencies, such as a bombing or earthquake, as students may show different responses 

for different situations. For the same reason, different emergency plans are needed for 

different types of situations. 

On a larger scale, Wang et al. (2016) simulated a multimodal near-field tsunami 

evacuation. The near-field tsunamis represent the middle range of five hazard groups 

(Earthquake, building fire, tsunami, wildfire, and hurricane). For the middle range hazard 

group, there are usually 20 to 40 minutes warnings window before the actual disaster hits, 

so the quicker and better the decision is made, the more lives can be saved. Evacuees had 

options of whether to hide in the shelter or evacuate by car in the near-field tsunami 

evacuation model. Each option had its pros and cons regarding the safety and efficiency 

of this evacuation, and evacuees cannot simply tell which mode of transportation is 

better. It is a complex evacuation simulation involving more than just making a simple 

choice (Wang et al., 2016). Wang et al (2016) investigated the effect of different 
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individual decision-making time scales to assess the mortality rate due to immediate 

evacuation right after an initial earthquake or after a specified milling time. Simulation of 

the evacuation showed some unexpected results which gave people more insights into the 

emergency evacuation. 

The results from the study above also gave people some insight about evacuation 

safety during near-field tsunamis. First of all, there is a strong correlation between the 

individual decision time and the mortality rate of the disaster, and the faster people make 

the right response, the more likely that they will survive which makes sense as they have 

more time to evacuate. Secondly, different structures have different resistance to the 

disaster, and vertical evacuation structures were more helpful than other structures, so the 

structure of the escape route and the shelter must be evaluated from time to time. 

Furthermore, depending on the actual emergency, the model for moving pedestrians 

should be changed accordingly. As in the emergency evacuation of the tsunami, the more 

people used the car, the fewer people could survive as the tsunami moves fast while 

people are congested on the road (Wang et al., 2016). 

In addition to these results, it is advised to include partial damage to the 

transportation network as it is commonly seen during catastrophic events. The 

vulnerability of the facility, congestion on the road, and accessibility and user-

friendliness of public transportation all need to be considered to better identify the 

bottleneck effects in the evacuation simulation models for future studies. Makinoshima et 

al. (2016) also presented an evacuation simulation model based on the evacuation 

behaviors observed during the Great East Japan Earthquake and Tsunami. Makinoshima 

et al. (2016) compiled the data from previous studies, surveys, and reports and developed 

an evacuation simulation model. In the evacuation model developed from the historical 

data, main roads were used for evacuation, and shelter preferences and pedestrian-car 

interactions were also considered. By doing so, this model was able to better estimate the 

actual evacuation behaviors during the catastrophic event. 

For the post-disaster simulation, Bunea et al. (2016) modeled how individuals 

react after the disaster. Their study analyzed the scenario in the city of Iaşi, Romania. Iaşi 

has a high seismic vulnerability as it has a lot of old buildings. Bunea et al. (2016) 
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simulated an evacuation situation for the earthquake as people need to cross three bridges 

before entering the hospitals or shelters. 

In their study, the time taken for evacuees to move across the three bridges was 

recorded. The vulnerability and damage of the earthquake to the bridges were taken into 

consideration, and different degrees of damage were included in the simulation to 

replicate the actual situation (Bunea et al., 2016). Their study built a good basis for a 

further experiment on evacuation safety in areas with many old buildings. The time for 

people to cross the bridge and enter the shelter can be further related to the mortality rate 

to show the feasibility of the structure of the city as the research done by Wang et al. 

(2016). 

Besides the assessment of the situation before emergency, the real-time support 

and assistance during the disaster is also critical for the safety and efficiency of the 

evacuees during the evacuation. For assistance during the evacuation, Yamamoto et al. 

(2018) used numerical simulation to understand the effects of the new ventilation 

equipment on the tunnel fire. For the tunnel fire, the use of the new ventilation equipment 

can improve the environment greatly and make it much easier for evacuees to escape. 

The Application of ML and RL in Evacuation 

Machine learning is different from human learning in terms of the way systems 

learn. One advantage of using machine learning in evacuation is that it can protect 

humans from exploring dangerous situations. If the machine can learn to find the exit 

during the evacuation, the danger can be transferred to the machine such as drones or 

robot agents instead of human pedestrians. 

Machine learning is based on the concept that systems learn from the dataset, 

identify the pattern, and make decisions. There are mainly three types of machine 

learning including supervised learning, unsupervised learning, and reinforcement 

learning. 

Supervised learning is to learn how to map from the attributes describing an 

instance to the targeted attribute, i.e., learning from a labeled dataset with guidance 

(Kelleher & Tierney, 2018). Unsupervised learning is to learn without a targeted 

attribute, i.e., learning from an unlabeled dataset without guidance. Without the targeted 



 

 

  

  

 

 

 

   

 

   

   

     

    

 

 

  

   

  

  

 

   

  

   

   

   

   

 

39 

attribute, unsupervised learning becomes more difficult as the task becomes more 

general, such as looking for the regularities in the dataset (Kelleher & Tierney, 2018). 

Reinforcement learning (RL) is a branch of machine learning area based on the concept 

that systems learn from the dataset, identify the pattern, and make decisions. The 

learning-based algorithm could make the computer think (Ferber et al., 2004), primarily 

for the reinforcement learning algorithm. 

Reinforcement Learning 

Reinforcement learning encourages the agents to obtain the most rewards in the 

circumstances through the interaction between the agent and the environment. The 

algorithm is informed when the agents' behavior is incorrect, whereas the proper behavior 

response is not disclosed. Unlike supervised learning, agents are not granted explicit 

inputs and outputs. Because of these features, reinforcement learning has been widely 

applied in numerous fields of study (Lovas, 1998), with strong online learning and self-

learning capabilities in complex environments. However, reinforcement learning has 

relatively poor convergence ability compared to other machine learning algorithms 

(Weiss & Ed, 1999). Designing the reward function and optimization function so that 

reinforcement learning can converge quickly in a complex environment is the key to the 

proper application of reinforcement learning in actual scenarios. 

The fundamental reinforcement learning algorithm is based on the Markov 

decision processes (MDPs), which are a classical formalization of sequential decision 

making, where the existing action will not only influence the immediate rewards, but also 

long-term returns (Zhou et al., 2017). MDPs regularize the reinforcement learning by the 

sequence of, 

𝑀𝑀 = (𝑆𝑆, 𝑆𝑆, 𝑃𝑃, 𝑆𝑆, 𝛾𝛾) 

The sequence comprises a set of states, S, actions A, transition probability P, 

reward value from the current environment R, and the discount factor 𝛾𝛾. Specifically, 

according to the distribution of time steps, MDPs have two categories: the continuous 

domain and the discrete domain Markov decision-making process. The agents plan to 
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discover the best optimization decision and get the best cumulative reward R in the 

current environment, which can be addressed as an MDPs problem. 

Reinforcement learning based on Markov decisions can be divided into two 

categories, namely model-based dynamic programming learning and model-free learning. 

Gelada and Buckman (2019) demonstrated that model-based and model-free learning are 

equivalent in sampling efficiency. In contrast, the difference between the two algorithms 

lies in the balance between understanding the dynamic characteristics of the agent or 

forcing the best policy in the actual application scenario. Model-based reinforcement 

learning is mainly divided into value-based learning such as Q series learning (Le et al., 

2017; Liu et al., 2016) and State-Action-Reward-State-Action (Sarsa), and policy-based 

learning such as Actor-Critic. In short, RL is quite different from the other machine 

learning methods because it learns by interacting with the environment without any prior 

datasets. An RL agent makes the most efficient decision at a given state by trial-and-

error, and the only input is delayed scalar reward (Tan, 1993). For this reason, RL is 

extremely beneficial for evacuation simulation with unknown threats as there is no 

dataset provided during evacuation process. 

RL has been applied in a wide range of evacuation situations. For example, 

researchers have used RL to adapt the complex agent-based model to a fast-linear model 

to solve the optimization of guidance sign for tsunami evacuation (Le et al., 2017), model 

situations such as sensor sensitivity of autonomous aerial vehicles (Quirion et al., 2014; 

Quirion et al., 2015), and get the optimal route recommendations during the emergency 

evacuations (Bi et al., 2019). 

Yao et al. (2019) proposed a data-driven cloud evacuation framework based on 

the RL. This cloud evacuation framework can simulate human behaviors even when the 

environment is changing. The model established by Yao et al. (2019) extracted position 

and velocity information from videos of the real-life evacuations and then used a cloud 

simulation system to generate the results. The evacuation model can improve efficiency 

and safety greatly in advance which can be applied in real-life situations. 

To give some other examples, Piyabhum et al. (2020) and Tian et al. (2018) 

proposed a suitable state space and reward function which results in an efficient 

collaborative double Q-learning RL algorithm. Arai et al. (2000) and Busoniu et al. 
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(2005) introduce the cut-loop routine in reinforcement learning that discards looping 

behavior and demonstrate its effectiveness empirically within a simplified NEO (non-

combatant evacuation operation) domain. Zhou et al. (2017) and Busoniu et al. (2008) 

proposed a novel asynchronous reinforcement learning algorithm that can solve problems 

such as exponential computation complexity in a large environment. Papoudakis et al. 

(2020) and Cheng et al. (2014) investigated several reinforcement learning algorithms 

and provided detailed experimental data, analysis, and insights into each algorithm. 

Zhang and Yi (2015) simulated using robots to guide people evacuating from 

dangerous areas. In their study, the people guided by robots had a significantly shorter 

evacuation time than non-robot-assisted evacuation. As in the care home fires incident, 

people were unable to locate the fire and closed room doors (Purser, 2015). With the help 

of guiding robots, people can find the exit rapidly even without prior training. 

Wang et al. (2016) and Tan (1993) propose a shared-Q RL algorithm in crowd 

simulation, which could enhance the efficiency of crowd evacuation. Dong et al. (2020) 

applied a Rainbow Q- Network (DQN) to solve the multi-exit evacuation, improving data 

utilization and algorithm stability. Makinoshima et al. (2016) designed the RL scheme to 

solve the immersed tube tunnel problem of a fire evacuation. 

In summary, RL is ideal for evacuation simulation because it can learn from 

interacting with the environment without prior knowledge, as the same criteria are needed 

in the emergency evacuation. During the emergency evacuation, there is no prior data 

that the agent can use. Agents must learn by exploring the environment themselves and 

find the optimal evacuation route.   

Multi-agent Reinforcement Learning 

A multi-agent system (Papoudakis et al., 2010) can be referred to as "societies of 

agents," which is a set of agents that interact jointly to coordinate their behavior and often 

cooperate to achieve some collective goals (Gosavi, 2004). In most cases, the researchers 

usually used a single agent to complete exploration for an extremely long time. Instead of 

using Independent Reinforcement Learning (InRL), where each agent treats its 

experience as part of its environment, some researchers adopted a Multi-agent RL system 
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(MARL) to define a range of collective situations (Lanctot et al., 2017; Shalev-Shwartz et 

al., 2016). Multi-agent learning is not simply adding more agents in the same 

environment; moreover, the interaction between each agent will significantly increase the 

complexity of the entire system. The behaviors between agents influence each other and 

accomplish the same goal through an internal cooperation mechanism. Researchers adopt 

this mechanism to combine the advantages of reinforcement learning to investigate a 

series of multi-agent reinforcement learning algorithms (Gwynne et al., 1999; Clouse, 

1995). 

Lanctot et al. (2017) compared agents' actions based on the observed behaviors. 

For the InRL, the policies learned by one agent overlaps other agents' findings, so InRL's 

learning policy can't be generalized to other agents. On the other hand, MARL can share 

learned policies with other agents. Balachandar et al. (2019) developed and evaluated 

different multi-agent protocols to instruct agents to collaborate to play soccer. They 

found that the model with communication had more promising results than the agents that 

didn’t have it. 

In a MARL system, agents could interact while sharing a common learned 

environment knowledge. They could either be competitive, cooperative, or a mix of the 

two. Martinez-Gil et al. (2011) used MARL to simulate pedestrian groups and the 

navigation process of the pedestrians. In their study, the researchers used two RL 

algorithms with multiple attributes for the simulation, including group size and speed 

control. However, Martinez-Gil et al. (2011) suggested that two learning algorithms can 

be integrated into one for future research. The agents can better collaborate with one 

algorithm. 

Raileanu et al. (2018) implemented the MARL algorithms with imperfect 

information. The reward of the RL in this study depended on both agents. Each agent has 

its hidden state, and the agent has to make predictions on other players from what they 

observed during the experiment. Agents need to solve the task by the predictions they 

made. A unique approach called the self-other-modeling method was used in their study 

(Raileanu et al., 2018). In this approach, agents update the values of states and actions by 

incorporating the prediction of others' values of states and actions. 
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Many tasks, such as autonomous vehicles, multi-player games, and multi-agent 

navigation require multiple agents to interact and communicate. Agents need to learn to 

cooperate and achieve their goals more efficiently. While it may seem intuitive for human 

beings to cooperate and collaborate, the same cooperation process is more challenging for 

RL agents. 

Shalev-Shwartz et al. (2016) implemented MARL into autonomous driving, 

where the vehicles need to form a long-term strategy that shares the same road with other 

traffic. The challenge of this study is the long duration of the experiment with other road 

users interrupting the regular operations. Shalev-Shwartz et al. (2016) used policy 

gradient iterations to deal with the interruptions. The interruption from other users is 

stochastic and unpredictable. The researchers used a hierarchical temporal abstraction in 

the policy gradient iteration (Shalev-Shwartz et al., 2016). To make agents easier to 

communicate and collaborate, it was found that having a decentralized controller may 

generate more desirable outcomes. 

The centralized controller regards the whole system as one agent, which causes 

the state and action spaces to rise exponentially as more agents join the system 

(Balachandar et al., 2019), driving the decision-making process to become more 

challenging, computation becomes more complex. On the other hand, the decentralized 

controller could let agents communicate and collaborate individually (Balachandar et al., 

2019). The decentralized controller treats every agent as an individual, eventually leading 

to more desirable results. De Witt et al. (2018) stated the possibility of complex 

decentralized coordination in the MARL when agents share some information. 

Summary 

In summary, there are numerous benefits for RL's application in analyzing a 

dangerous environment for evacuation. Multi-agent collaboration has tremendous 

advantages in utilizing RL across diverse fields of study. While existing studies have 

stressed the significance of multi-agent collaboration, few studies concentrated on the 

application of multi-agent collaboration using RL for navigation and exploration during 

an emergency evacuation, especially with unknown threats in the environment. This 
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study was intended to fill the gap by investigating the effect of multi-agents and 

environment complexity on the evacuation efficiencies, both under the static obstacles 

and dynamic obstacles situations, for an airport environment situation. 

Methodology 

This section describes the research approach and methodology, including the 

learning environment, algorithm, and data treatment and analysis. There was a sequence 

of two studies conducted for this project. Study 1 investigated the performance difference 

between a single-agent and a multi-agent method for a static obstacle situation. study 2 

was based upon the results obtained from study 1 and extended to a more aviation 

specific application. In study 2, a small airport was used as the environment and the 

threats were modeled as moving. Study 2 investigated performance differences in a 

dynamic environment, when obstacles are moving in a more airport specific 

environment. 

Research Approach for Study 1 

For Study 1, there were two types of environments explored by robot agents, 

including single-agent exploration and multi-agent collaboration. Their goal was to 

investigate the environments and locate the exits as soon as possible. The performance of 

single-agent exploration and multi-agent collaboration during emergency evacuation 

using RL algorithms were compared. The complexity of the environment and the 

exploration method were the two independent variables, and each of them had two levels. 

The dependent variable for this study was the performance of the agents. The agents' 

performance would be compared in different situations regarding time, death counts, and 

rewards. 

Design and Procedures 

Two different environments were used as the test bed for exploration. A simple 

environment was a 10*10 meters space with one threat, and a complex environment was 

a 10*20 meters space with three threats. Agent/agents started from the left lower corner 
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of the map to try to locate the room's exit. There were threats with a dimension of two by 

three in the middle of the room placed randomly, and one unit to each direction around 

the threat was considered the dangerous area, as shown in Figures 1 and 2. 

The figures show that the cross and circle were the beginning and the ending 

points, respectively; the dark blue and light blue areas were the threat and the dangerous 

regions. Agents would try to learn and evacuate while avoiding the hazardous area and 

the danger.

 Figure 1 

Simple Environment 
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Figure 2 

Complex Environment 

A single Q-table was employed in the single-agent simulation to record the 

rewards and actions. The number of maximum episodes was 5000. For multi-agent 

simulation, two agents both started at the origin point. They would communicate and 

collaborate by sharing the Q-learning table. Each agent would update its own Q table, and 

the final Q-table would be the average of the two individual Q-learning tables. The 

research operated each scenario 50 times for statistical analysis to see the differences 

between single-agent exploration and multi-agent collaboration methods. Each trail 

would end after 5000 episodes, and then agents would start over to explore the 

environment. 

           The agents could move in eight directions freely. Thus, there were eight potential 

action choices for each position, except at the corners or edges. 

Research Approach for Study 2 

In a dynamic environment, the obstacle is simulated to move continuously. To 

implement the Q-learning method for study 2, we used a similar layout as Study 1, and 

assume there are two agents starting at the entrance of a room, the room has the size of 
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10*10 meters, the obstacle is moving within a known trajectory which is a 9*9 square 

trajectory. The agents are trying to find the exit without colliding with the obstacle. Each 

agent uses the Q-table to record the state status and the action taken. The state status is 

agent location, measured by the distance between the agent and the target and the 

distance between the agent and the moving obstacle. The map is shown as the following 

Figure 3. 

Figure 3 

Moving threats dynamic environment 

As shown in Figure 3, the blue square is the beginning point, while the green square is 

the target point. The red square is the obstacle area and once the moving agent collides 

the red area, the agent will go back to the beginning point. In this study’s dynamic 

environment, the obstacle was moving with a square trajectory, while we set the agent 

moving to eight different directions as default, which means there are eight possible 

actions choice for every state. 

Furthermore, a real airport environment was used as the environment to 

demonstrate the benefits of the MARL in dynamic environment. The environment is 

shown as the following Fig.4. 

Figure 4 

Three airport environments 
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In the airport environment, a moving threat was initialized in a random position 

and moving at a random direction every time step. For these three maps, two agents were 

applied to explore and evacuate to the exit on the upper right. The reward scheme was 

same as indicated in study 1. Two types of agent interactions were compared, one was the 

two agents explored environment independently without any collaboration and the second 

way is have the two agents’ communication and collaborate simultaneously, as described 

in first phase of the study 2. The average reward was compared between these two 

methods for all the three different airport layouts. 

For both studies, a Q-learning RL algorithm was used to find the best policy to 

maximize the reward, and Python simulated and compiled the result, as described in the 

next section. 

Q-Learning Algorithm 

In both studies, Q-learning was utilized as an off-policy RL algorithm that seeks 

to find the best action for the current state. The Q-table includes states and actions, which 

follows the form of Q (state, action), as shown in Table 1 as a sample format. States and 

actions would be preserved in the Q-table, and agents would take actions based on the Q-

value. Performance measures were collected including time, death counts, and rewards. 

Table 1 

Q-table 

State/Action A1 A2 

S1 Q (s1, a1) Q (s1, a2) 

S2 Q (s2, a1) Q (s2, a2) 

S3 Q (s3, a1) Q (s3, a2) 

Agents are required to discover the policy that maximizes the expected 

cumulative rewards. The bellman function is employed to find the optimal decision 

sequence. The current state value function V(s) could be acquired by computing the total 

reward of the current state’s expected reward. The bellman function is shown below: 

Vπ (s)=E (Ut | St = s) 

= E [R(t+1) + γ [R(t+2) + γ [……]] │St = s]                                (1) 

= 𝐸𝐸 [(𝑡𝑡+1) + 𝛾𝛾 (𝑆𝑆′) | 𝑆𝑆𝑡𝑡 = 𝑠𝑠] 



 

   

   

 

  

   

 

 

 

 

 

 

  

 

 

    

 

 

 

      

  

 

 

 

  

    

 

 

 

 

49 

The 𝑉𝑉∗(𝑠𝑠) is the maximum cumulative expected value: 
𝐻𝐻 𝛾𝛾𝑡𝑡 V*(s)= 𝑚𝑚𝑎𝑎𝑚𝑚𝜋𝜋 𝑉𝑉𝜋𝜋 (𝑠𝑠) = 𝑚𝑚𝑎𝑎𝑚𝑚𝜋𝜋 𝐸𝐸 [∑ 𝑆𝑆(𝑠𝑠𝑡𝑡 , 𝑆𝑆𝑡𝑡 , 𝑆𝑆𝑡𝑡+1)|𝜋𝜋, 𝑠𝑠0 = 𝑠𝑠]            (2) 𝑡𝑡=0 

The state-action function is: 

𝒒𝒒𝝅𝝅(𝒔𝒔, 𝒂𝒂) = 𝑬𝑬𝝅𝝅[𝒓𝒓𝒕𝒕+𝟏𝟏 + 𝜸𝜸𝒓𝒓𝒕𝒕+𝟐𝟐+. . . . . |𝑨𝑨𝒕𝒕𝒂𝒂, 𝑺𝑺𝒕𝒕 = 𝒔𝒔] = 𝑬𝑬𝝅𝝅[𝑮𝑮𝒕𝒕|𝑨𝑨𝒕𝒕 = 𝒂𝒂, 𝑺𝑺𝒕𝒕 = 𝒔𝒔]       (3) 

The Gt is the total discount reward value for time t and γ is the discount factor. 

When the discount factor is close to 1, the latter state is more critical; vice versa, when 

the element is close to 0, the agent only considers the current interest’s influence. The 

best action-value function (4) was utilized to open the expectation (5): 

𝑸𝑸∗(𝒔𝒔, 𝒂𝒂) = 𝒎𝒎𝒂𝒂𝒎𝒎𝝅𝝅 𝑸𝑸∗ (𝒔𝒔, 𝒂𝒂)                                            (4) 

𝑸𝑸∗(𝒔𝒔, 𝒂𝒂) = ∑𝒔𝒔′ 𝑷𝑷(𝒔𝒔′|𝒔𝒔, 𝒂𝒂)(𝑹𝑹(𝒔𝒔, 𝒂𝒂, 𝒔𝒔′) + 𝜸𝜸 𝒎𝒎𝒂𝒂𝒎𝒎𝒂𝒂′ 𝑸𝑸∗(𝒔𝒔′ , 𝒂𝒂′))              (5) 

The solution is thus: 

𝑸𝑸𝒌𝒌+𝟏𝟏 
∗(𝒔𝒔, 𝒂𝒂) ← ∑𝒔𝒔′ 𝑷𝑷(𝒔𝒔′|𝒔𝒔, 𝒂𝒂)�𝑹𝑹(𝒔𝒔, 𝒂𝒂, 𝒔𝒔′) + 𝜸𝜸𝑸𝑸𝒌𝒌

∗(𝒔𝒔′ , 𝒂𝒂′)�                (6) 

The advantage of Q-learning is employing the Temporal Difference (TD) learning 

method and offline learning for agents. 

The TD learning incorporates the sampling method of the Monte Carlo method 

and the bootstrapping of the Dynamic programming method, which operates the latter 

state’s value function to estimate the current value function. These features make TD fit 

in the model-free algorithm and accomplish the goal faster. The value function is 

presented as follows: 

𝑽𝑽(𝒔𝒔) ← 𝑽𝑽(𝑺𝑺) + 𝜶𝜶�𝑹𝑹𝒕𝒕+𝟏𝟏 + 𝜸𝜸𝑽𝑽(𝒔𝒔′) − 𝑽𝑽(𝒔𝒔)�                        (7) 

The 𝑆𝑆𝑡𝑡+1 + 𝛾𝛾𝑉𝑉(𝑆𝑆′) is called the TD object, and the 𝛿𝛿𝑡𝑡 = 𝑆𝑆𝑡𝑡+1 + 𝛾𝛾𝑉𝑉(𝑠𝑠′) − 𝑉𝑉(𝑠𝑠) 

is called the TD bias. 

The Q value can be calculated according to the formula (8). This is the renewal 

process of the Q-table. 

𝑄𝑄(𝑠𝑠, 𝑎𝑎) ← 𝑄𝑄(𝑠𝑠, 𝑎𝑎) + 𝛼𝛼[𝑟𝑟 + 𝛾𝛾 𝑚𝑚𝑎𝑎𝑚𝑚𝑎𝑎′ 𝑄𝑄 (𝑠𝑠′ , 𝑎𝑎′) − 𝑄𝑄(𝑠𝑠, 𝑎𝑎)]              (8) 

The formula above is the update function of the Q-learning. The agents would 

select the max Q (s’, a’) multiplied by the discount rate and then add the real reward 

value as the Q-reality based on the following state: s’. The previous Q-value in the Q-

table would be the Q-estimate. 

𝑸𝑸(𝒔𝒔𝟏𝟏,𝒂𝒂𝟐𝟐)reality = 𝑹𝑹 + 𝜸𝜸 ∗ 𝒎𝒎𝒂𝒂𝒎𝒎 𝑸𝑸 (𝒔𝒔𝟐𝟐) 

𝑸𝑸(𝒔𝒔𝟏𝟏,𝒂𝒂𝟐𝟐)estimate = 𝑸𝑸(𝒔𝒔𝟏𝟏, 𝒂𝒂𝟐𝟐) 
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𝑸𝑸𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒓𝒓𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅 = 𝑸𝑸𝒓𝒓𝒅𝒅𝒂𝒂𝒓𝒓𝒅𝒅𝒕𝒕𝒓𝒓 − 𝑸𝑸𝒅𝒅𝒔𝒔𝒕𝒕𝒅𝒅𝒎𝒎𝒂𝒂𝒕𝒕𝒅𝒅 

𝐍𝐍𝐍𝐍𝐍𝐍𝑸𝑸(𝒔𝒔𝟏𝟏, 𝒂𝒂𝟐𝟐) = 𝑶𝑶𝒓𝒓𝒅𝒅(𝒔𝒔𝟏𝟏, 𝒂𝒂𝟐𝟐) + 𝜶𝜶 ∗ 𝑸𝑸𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒓𝒓𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅 

The loop would then be generated to calculate the final Q-table. The 

pseudocode of the Q-learning algorithm shown below was used: 

Algorithm 1 Pseudocode of the Q-learning 

Initialize Q(s, a) arbitrarily 

Repeat (for each episode): 

Initialize s 

Repeat (for each step of the episode):

     Choose a from s using policy derived from Q (e-greedy) 

Take action a, observe r, s’ 

𝑄𝑄(𝑠𝑠, 𝑎𝑎) ← 𝑄𝑄(𝑠𝑠, 𝑎𝑎) + 𝛼𝛼[𝑟𝑟 + 𝛾𝛾 𝑚𝑚𝑎𝑎𝑚𝑚𝑎𝑎′ 𝑄𝑄 (𝑠𝑠′, 𝑎𝑎′) − 𝑄𝑄(𝑠𝑠, 𝑎𝑎)] 

𝑠𝑠 ← 𝑠𝑠′ 

Until s is terminal 

The general algorithm for multi-agent was derived from the single-agent Q-

learning. For the multi-agent algorithm, agents would examine the environment jointly 

and renew the same Q-table. The shared Q-table was their communication method for 

collaboration. The pseudocode of the multi-agent Q-learning algorithm is shown below: 

Algorithm 2 Pseudocode of the Multi-agent Q-learning 

Initialize Q (s1, a) arbitrarily 

Initialize Q (s2, a) arbitrarily 

Repeat (for each episode): 

Initialize s 

Repeat (for each step of the episode):

     Choose a from s1 using policy derived from Q1(ε-greedy)

     Choose b from s2 using policy derived from Q1(ε-greedy) 

Take action a, observe r, s’ 

Take action b, observe r2, s2’ 
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Q1(s1, a) ← Q1(s, a) + e act max
a ′ Q 1(s′, a′)ass, a) + e a 

𝑄𝑄1(𝑠𝑠1, 𝑏𝑏) ← 𝑄𝑄1(𝑠𝑠1, 𝑏𝑏) + 𝛼𝛼[𝑟𝑟 + 𝛾𝛾 𝑚𝑚𝑎𝑎𝑚𝑚 𝑄𝑄 1(𝑠𝑠2′, 𝑏𝑏′) − 𝑄𝑄1(𝑠𝑠2, 𝑏𝑏)] 
𝑎𝑎′ 

𝑠𝑠 ← 𝑠𝑠′ 

Until s is terminal 

Results 

This section presents the results for both studies, including the agents’ 

performances, including time, death counts, and reward. The results of single-agent 

exploration and multi-agent collaboration were presented for both studies. For study 1, a 

statistical analysis was conducted to compare the differences between the different 

conditions For study 2, graphical illustrations were used to clearly show the gap in 

rewards between the two agents exploration methods. 

Study 1 Results 

The results of agent exploration time, death counts, and reward for the simple and 

complex environment with/without collaboration are exhibited in Table 2. Time, death 

counts, and reward were the average result through 5000 episodes. 

Table 2 

Descriptive Statistics Between Simple and Complex Environment 
Environ-

ment 

N = 50 Collab. Time 

(s) 

No Collab. Time 

(s) 

Collab. 

Death 

No Collab. 

Death 

Collab. 

Reward 

No Collab. 

Reward 

Simple Mean 24.099 30.116 .009 .140 -36.280 -44.273 

SD .180 .444 .001 .006 .043 1.496 

Complex Mean 137.415 616.215 .102 2.466 -82.820 -364.295 

SD 7.063 22.348 .007 .099 .048 18.834 

Note. Collab. = Collaborative method, SD = Standard Deviation 

Hypothesis Testing 

From the results above, it can be seen that the environment has some influences 

on the performance of agent collaboration; three two-way ANOVAs were performed to 
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further test the effect of collaboration and environment on the agent learning 

performance, in terms of time, death counts, and reward between collaboration and no-

collaboration methods, and the interaction effect on these measures between the 

collaboration method and the complexity of environments. The assumptions of equality 

of variance were tested. Levene's tests of equality of variance were significant (p < .05), 

and thus unequal variances were assumed for all three ANOVAs. Three two-way 

between-subjects ANOVAs and interaction effects were all significant at the alpha level 

of .05, p < .001; the results were shown in Table 3. The time for agents with collaboration 

to find the exit was significantly lower than the agent without collaboration in both 

environments.  

Two null hypotheses were thus rejected. There was a significant difference in the 

performance between single-agent exploration and multi-agent exploration regarding 

time, death counts, and rewards. There were interactions between the complexity of the 

environment and the performance, including time, death counts, and rewards. 

The death counts for agents with collaboration were significantly lower than those 

without collaboration in both environments. The reward for collaborating agents was 

substantially higher than the agent without collaboration in both environments. Figures 5, 

6, and 7 below show all three positive interactions. The agents' performance, including 

evacuation time, death counts, and reward, increased when the environment became more 

complicated (0 refers to simple environment and single agent without collaborations). 

Table 3 

Two-Way ANOVA for Environment, Collaboration or Both 
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Figure 5 

Interaction Between IVs Regarding Time 
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Figure 6 

Interaction Between IVs Regarding Death Counts 
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Figure 7 

Interaction Between IVs Regarding Reward 

Exploration Behaviors 

Agents are set to move in eight different directions as default, which suggests 

there are eight possible choices for every state. With the exploration and exploitation 

strategy, the experiment initialized the exploration rate as 0.5, while the exploration rate 

will be 0.9999. The formula for the exploration and exploitation will be: 
Episodes ε = (0.9999) *0.5 

The exploration rate based on the episodes is shown in Figure 8, with a maximum 

episodes of 40000: 
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Figure 8 

Exploration Rate and Episodes 

Study 1 Single Agent Exploration Behaviors 

Figure 9 displayes the final actions on each position (state), and Figure 10 

highlightes the learned best route (policy) for the evacuation. The agent starts with 

random exploration, and after several episodes, specific actions would be bypassed, and 

eventually, the optimal policy was learned. 
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Figure 9 

Agents Choices for Each Position in Simple or Complex Environment 
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Figure 10 

Optimal Route for Evacuation in Simple or Complex Environment 
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Figure 11 depicts the rewards and time for the simple and complex environment. 

From Figure 11, the learning performance constantly improved until 500 episodes, and 

after that, the improvement of learning diminished to a plateau steady state. The 
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computation time dropped sharply in the simple environment and stabilized after 1000 

episodes. The time in the steady-state period was lower than 0.005 seconds per episode. 

In the complex environment, the agent followed a similar pattern as in the simple 

environment, except the agent needed a long time to learn from the environment. The 

reward increased continually in the first 1000 episodes and became stable around 3000 

episodes. The cumulative reward was slightly lower, and the time was slightly higher 

than in the simple environment. The time was not as steady as those of the simple 

environment. The higher complexity level caused this unsteady environment and the 

insatiable policy's choice. 

Figure 11 

Reward and Computation Time in Simple and Complex Environment 
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Note. Time in Complex Environment 

Study 1 Multi-Agent Collaboration Behaviors 

The mean value of fifty trails and a moving average filter was utilized to 

demonstrate the main effects. The results are displayed in Figure 12. The red line 

represents the result for no collaboration exploration, and the blue line represents the 

collaboration exploration. The left figure shows the time, and the right figure shows the 

number the agent that touched the threat and died. 
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Figure 12 

Time and Death Counts With/Without Collaboration in Simple and Complex Environment 
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Note. Time in Simple Environment 

Note. Death Counts in Simple Environment 

It is fairly straightforward to visualize for simple and complex environments, and 

collaboration outperformed the non-collaboration agents. More specifically, for the 

simple environment, the time for agents with collaboration to converge to the optimal 

policy and reach a stable value was much faster than non-collaboration agents. The 

collaboration’s method needs 19.46 milliseconds agents without collaboration used 22.8 

seconds, which improved by 17.6 percent. In the complex environment, agents with 



 

 

   

    

   

 

   

 

  

   

    

    

   

  

   

  

 

 

 
   

   

0 

«)()00 
50000 N 

N 

"' "' 
32000 

40000 

" " 
"' "' 

"' "' 
... ... 
., 00 

.,, .,, 
0 2 3 4 5 6 7 8 9 0 2 3 4 5 6 7 8 9 

64 

collaboration had similar steady-state values, but agents with collaboration converged to 

the stable value faster. 

In the simple environment, the tendency of touching the threat was similar 

between the agents with and without collaboration. However, it can be noticed that the 

number of threats touching agents with collaboration dropped much faster than those of 

the agents with no collaboration. 

The advantage of the collaboration for agents to avoid the threat was much more 

pronounced in the complex environment than in the simple environment. From Figure 9, 

it can be observed that the probability of death in the collaboration model dropped much 

faster than in the non-collaboration model. As the environment became more complex, 

the benefits of the collaboration became more prominent.  

Study 2 Results 

The result of study 2 showed a similar benefit for multiple agent collaboration. In 

this study, it was found that the main benefits for multiple agents’ collaboration is in the 

time to converge to the steady state, and the rewards profiles are similar. After examining 

an exploitation strategy and implementing the Q-learning algorithm into this experiment, 

study 2 adopted the heat-map statistic method to obtain the final route computed by the 

Q-learning algorithm, to take a deeper look at the agent behaviors, as shown in Figure 13. 

Figure 13  

Heat-Map of Agent Movement vs. Obstacle Movement 

Figure 13 exhibits the obstacle and the agent's movement, demonstrating that the 

agent followed the diagonal route to evacuate. The agent finally reached everywhere on 
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the 10*10 map; the reason for the map concentrated on this diagonal line is that the agent 

spent more time on this optimal route than any other position. The common log 

transformation was adopted to avoid the skewed distributions of state visits. The formula 

for the log transform is: = 𝑙𝑙𝑙𝑙𝑙𝑙( 𝑚𝑚 + 1) , where 𝑚𝑚 is the number of times an agent passes a 

location. After doing the log transformation, the second heat-map is generated for the 

agent and the obstacle movement, as following Figure 14, which ended up with a 

smoother distribution: 

Figure 14 

Heat-Map of Agent Movement vs Obstacle Movement (After Log Transform) 

The experimental data improved particularly in the first 5000 experiments. 

Because the reward for each episode is zero at the start of the training, the agent will 

presumably move randomly so that the reward gradually changes based on every episode, 

sometimes these changes can be abrupt due to the different level of randomness involved. 

In this study, in order to observe the overall trend, the moving average algorithm was 

implemented by the NumPy convolution to smooth the reward curve, in order to better 

visualize the results. For the moving average, a time window is slid along with the input 

and compute the mean of the window's contents, the comparison between the reward 

curve and the reward curve after running means is shown in Figure 15: 



 

  

   

 

 
   

    

0 

- 100 

.. -200 
E 
0 
0 -300 "' 'E 
~ 
" a:: 

-400 

-500 

-600 

-700 
0 5000 10000 15000 20000 25000 30000 35000 40000 

episode# 

0 

-50 .. 
E 

~ -100 

'E .. 
3: 

" a:: 
-150 

-200 

-250 

0 5000 10000 15000 20000 25000 30000 35000 40000 
episode# 

66 

Figure 15 

Original Reward Curve vs. Smoothed Reward Curve 

The moving average computation time value is around five milliseconds per 

episode, the running time to achieve a steady-state is shown in Figure 16: 
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Figure 16 

Computation Time Curve vs. Running Mean Computation Time 

The two agents start simultaneously in the beginning, and they mostly likely went 

in different directions, due to the random initial actions. During the learning phase, they 

updated the Q-learning table simultaneously shared Q-learning table data with each other. 

So it is expected that final Q-table converged much more rapidly than the case without 

collaborations. This experiment compared the two agents moving to the target separately 

and the two-agent moving to the target by using the collaboration algorithm. The 

computation time is being compared in Figure 17. 
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Figure 17

 Episodes Over Time for Collaboration vs. Separate 

In Figure 17, the red line represents the no-collaboration case, whereas the blue 

line represents the collaboration case. The figure shows that the blue curve drops and 

reaches a stable value faster than the red curve, and the calculation time is shorter to get 

the steady state. The collaboration’s method is cost 6.5 milliseconds per episode. 

However, the no-collaboration one costs 7.5 milliseconds per episode, which improves 

15.4 percent. And from the curve, with the training progress, the computation time curve 

of the collaboration is found to be smoother than the separation one. That implies that the 

collaboration algorithm is a little more stable in converging to the optimal policy. And it 

is worth noting that in this situation, the size of the room is only 10*10 meters; with the 

increasing size of the map, the collaboration method could be more effective. 

Figure 18-20 show the comparison results for the real airports simulations based 

on Figure 4. 
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Figure 18 

Airport layout 1 reward comparison 

Figure 19 

Airport layout 2 reward comparison 
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Figure 20 

Airport layout 3 reward comparison 

From the experiments with three airport layout maps, it can be seen that the 

collaboration showed a similar benefit for all three maps. Although both methods achieve 

same results after 25000 episodes or so, the results implied that they can both 

successfully converge to the optimal evacuation policy, however, from the three plots, the 

collaboration case converges much faster. This is same as the previous case with 10 *10 

room experiment. With a more complex environment like the airport, with more obstacles 

involved, multi-agent collaboration demonstrated efficiency in learning the evacuation 

route, implying saving times to find the best evacuation route. 



 

 

                           

 

 

   

  

 

 

  

    

 

 

 

 

 

  

  

 

 

  

   

  

 

 

    

   

71 

Discussion, Conclusions, and Recommendations 

Discussions 

An emergency could happen anytime at any place. Under urgent circumstances, it 

is hazardous and time-consuming for evacuees to identify the most proper evacuation 

route, especially if there are some uncertainties and life-threatening conditions in the 

surroundings, more so if the evacuees are not familiar with the environment. The public 

may panic during the evacuation and exhibit flawed decision-making capability. For the 

transportation system with high pedestrian density, the insufficiency of training and 

assistance will cause significant chaos and congestion. Training can be added and 

emphasized during daily operations, but different kinds of assistance should also be in 

place to deal with the crisis whenever necessary. The use of autonomous agents for 

exploration could save time and minimize the risk for human beings. The agents can 

quickly examine the unfamiliar environment and form the optimal evacuation route from 

learning, and these routes can be communicated to humans to guide the evacuation 

process. 

Using the RL algorithm, this study used robotic agents to model the navigation 

process in an unknown environment. Agents can learn the environment quickly, find the 

optimal evacuation route efficiently, and avoid threats effectively. Two types of 

environments, simple and complex, and two types of agent interaction, collaboration or 

no-collaboration, were compared to investigate their effects on the learning performance. 

Results discovered that the multi-agent collaboration algorithm delivered a significantly 

better performance than the single-agent method regarding the time needed to locate the 

exit and the reward, which were calculated by total steps and punishments in both simple 

and complex environments. The differences were much more evident in the complex 

environment. 

The RL agents learned the optimal policy from the environment through trials and 

reinforcement. Time is critical during an emergency evacuation. The efficiency of 

learning depends on the knowledge of the environment; the more knowledge about the 

environment, the an agent converges to the optimal navigation policy. By collaborating, 
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in this case, sharing the learning experience, the agents would have a more prompt and 

accurate understanding of the conditions, thus, using significantly lower time to learn the 

route-to-exit than the agents without collaboration. In the scenario of the simple 

environment, agents' performance reached a steady state at around 5000 episodes, and 

agent steady-state performance is better than that in the complex environment, which is 

expected, as the learning in the complex environment is much more difficult. The 

episodes needed to reach a steady state also showed the level of complexity of the 

environment. The number needed to learn can be used as a learning time limit for 

planning and resource assignments. In the real-life evacuation situation, the learning 

episodes could be translated to the number of agents required according to the size and 

complexity level of the area in the building. 

One common problem using the RL algorithm is the convergence rate: the speed 

to converge or stabilize to a specifically targeted performance value. In this study, results 

obtained by adopting the multi-agent collaboration showed a higher convergence rate 

than the single-agent method results, as demonstrated in both studies, which is another 

advantage of utilizing agent collaboration. It is evident from the results that, the multi-

agent collaboration method can find an explicit and steady optimal route solution faster 

and easier. 

The use of autonomous agents for exploration could save time and minimize the 

risk for human beings. The agents can provide a generic outline before the exploration is 

finished. As the exploration process goes on, a more detailed evacuation route will be 

suggested. The information, including a holistic view of the map, relative location of the 

evacuee, and available evacuation route, can be manifested through mobile devices or 

available digital displays. The information detected by the robot agents can also be 

transmitted to first responders, like police, firefighters, etc., who need to enter the 

buildings of the transportation system. For airport certificate holders, this kind of 

assistance can be amended to the airport emergency plan as a part of their airport 

certification manual to comply with Title 14 CFR, Part 139. 

In the scenario of the simple environment, agents' performance reached a steady 

state at around 2000 episodes, and agent steady-state performance is better than that in 

the complex environment, which is expected, as the learning in the complex environment 
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is much more difficult. The episodes needed to reach a steady state also showed the level 

of complexity of the environment. The number needed to learn can be used as a learning 

time limit for planning and resource assignments. In the real-life evacuation situation, the 

learning episodes and death counts could be translated to the number of agents required 

according to the size and complexity level of the area in the building. 

The benefit of the multi-agent collaboration was further confirmed by the second 

study, where the threats were moving at either a pre-defined route or randomly, on top of 

the complexity of the environment, as well as the experiment from a more complicated 

airport environment. The communication and sharing of information helped agents to 

focus on the most likely optimal routes without the need to explore all the possibilities of 

the evacuation routes. This is certainly demonstrated by the faster convergence rate of the 

agent’s rewards plot. Although the final rewards were similar between the no-

collaboration and collaborative agents, the saving the convergence times implies that the 

collaborating agents can find the optimal routes faster, which implies time saving the 

evacuation situations. Because in an emergency every second counts, the time saved 

could translate into lives saved with faster evacuation. 

It has been recognized that one common problem using the RL algorithm is the 

convergence rate: the speed to converge or stabilize to a specifically targeted 

performance value. In this study, results gathered by adopting the multi-agent 

collaboration showed a higher convergence rate than the single-agent method results, 

which is another benefit of using agent collaboration. It is apparent from the results that 

the multi-agent collaboration method can find a clear and steady optimal route solution 

quicker and easier. 

One limitation of this study was that the experiment environment was fully 

observable even though unknown to the agents in the beginning. The agent can't fully 

observe the environment in certain circumstances, which means the holistic map is 

unavailable. Under this situation, it is necessary to introduce the partially observable 

Markov decision process (POMDP).  In POMDP, it is assumed that the system dynamics 

have the Markov property, but the agent cannot observe the underlying state directly. In 

ordinary Q-learning, when the state and action space are low-dimensional and discrete, 

the Q-Table could be used to store the Q value of each state-action pair. When the state 
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and action space are high-dimensional and continuous, it is challenging to use the Q-table 

to track state-action values. Under this circumstance, it is more effective to transform the 

Q-table update into a function-fitting problem. And to be specific, in our experiment 

environment, the obstacle is moving in a fixed trajectory. However, in the real-life 

setting, the threats are probably moving in a random trajectory which is hard to predict. 

So, this phenomenon will significantly increase the complexity of the circumstances. 

During this experiment, we observed that some agents fell into a deadlock 

(endless loops) due to the combined effect of exploration and exploitation. In some 

situations, the exploration rate decreased before the best actions in the current state had 

been learned. The agents may thus not take the optimal action or even fall into a deadlock 

loop, which will make the reward for that episode extremely low. 

The size of the room is limited to 10*10 or 10*20 meters in both studies. For 

agents with collaboration, the possibility of agents touching the threats would be 

decreased to zero after specific trials, but death counts still exist after a long period of 

learning. Even the death counts could stabilize to a low value for the agent without 

collaboration. For a bigger-size environment, this could be a severe problem. As the 

interaction effects between the complexity and the collaboration method were significant, 

the collaboration method will have much better performance in a more complicated 

environment. In a real-life emergency evacuation, the actual area of the evacuation would 

be much bigger and more complex. The collaboration method will thus be much more 

beneficial to save resources and time for the evacuation process. 

Conclusions 

Agent exploration can be an excellent substitute for human exploration in a 

dangerous environment during evacuation. The use of agent exploration can generate a 

digital map with the optimal route in the mobile app, which would reduce the time for 

evacuees to find the exits. A multi-agent collaboration method is an approach that lets 

agents find exits faster with lower risks. The agents showed better performance in 

discovering time, death counts, and rewards. There were significant interactions between 

the complexity of the environments and the collaboration method on discovering time, 
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death counts, and rewards. It is timesaving in the emergency evacuation to use the agents 

to complete the tasks and use multi-agent collaboration to find the optimal evacuation 

route. It could further reduce the time and threat of the tasks. 

Recommendations 

For future research, a better exploration and exploitation strategy can produce a 

higher performance in evacuation efficiency. The fixed environment can also be changed 

to a stochastic and dynamic environment. A more complex stochastic environment can 

cause a much lower convergence rate for the algorithm. Deep RL and partially observable 

Markov decision process would be suggested for solving this problem in a future 

experiment. A deep neural network has a good effect on extracting complex features. 

Combining deep learning with reinforcement learning may be an excellent solution for 

better performance in a complicated environment. 
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