EXHIBIT F | UTC Project Information | | |--|---| | Project Title | Epidemiological Models for Transportation Applications: Secondary Crashes | | University | Embry-Riddle Aeronautical University | | Principal
Investigator | Sirish Namilae (PI)
Co-Investigators- Scott Parr and Dahai Liu | | PI Contact
Information | namilaes@erau.edu PH: 386 226 6445 | | Funding Source(s)
and
Amounts
Provided (by each
agency or
organization) | Total - \$150,000
=DOT-CATM- \$100,000 + ERAU (cost share) \$50000 | | Total Project Cost | \$ 150,000 | | Agency ID or
Contract Number | | | Start and End
Dates | 03-01-2020 to 03-01-2021 | | Brief Description
of
Research Project | Highway crashes can have an immediate and significant impact on the mobility of individuals and goods traveling within the area. Crashes that occur as a result of an initial or primary crash are known as secondary crashes. Estimates suggest that nearly ten percent of freeway crashes can be classified as secondary. These secondary crashes are exceptionally dangerous for the victims of the primary crash and the first responders dispatched to support them. Understanding why secondary crashes occur and predicting where and when secondary crashes are more likely can significantly improve emergency response and protect vulnerable road users such as primary crash victims and emergency responders. We will introduce a new paradigm in modeling this problem by utilizing the mathematical modeling concepts form epidemiology. In particular, we will analyze the data on secondary crashes in Florida for the past two years, and develop a self-excitation point process model for spatial and temporal distribution of secondary crashes. In addition, we will develop agent based models for detailed analysis of mitigation strategies. We will use this combination of models to analyze and suggest | | | effective policies to the transportation and emergency response policymakers. | |---|---| | Describe Implementation of Research Outcomes (or why Not implemented) | We will introduce a new paradigm in modeling this problem by utilizing the mathematical modeling concepts form epidemiology. The primary research outcomes are the following: | | | Application of the rich mathematical framework developed in the
context of epidemic events to understand and construct predictive
models for secondary crashes | | Place Any Photos
Here | Establish the dependence between primary and secondary crashes
mathematically. Assess the temporal and spatial distribution of
secondary crashes as a function of primary crash. | | | Utilize these models for effective policy analysis to mitigate
secondary crashes and safety of first responders at the primary crash
location. For example, generate recommendations for policy makers
regarding resource allocation to minimize secondary crashes. | | Impacts/Benefits of Implementation (actual, not anticipated) | Identify the temporal and spatial distribution of secondary crashes
after a primary incident. This will help narrow down the focus area
for policy makers. | | | Identify the policies that reduce the contagion aspect of secondary
crashes. Identify the strategies that reduce the frequency and impact
of secondary crashes. | | | Communicate the findings to policy makers including the local and
federal Department of Transportation officials and emergency
responders. | | Web Links Reports Project Website | http://pages.erau.edu/~namilaes/EpidemicModelsforTransportation.pdf Links to reports will be added on project completion |